Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses.

Cell Rep

K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway. Electronic address:

Published: May 2022

Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.110901DOI Listing

Publication Analysis

Top Keywords

bivalent vaccines
12
vaccines
8
increases cell
8
cell responses
8
antigen bivalency
4
bivalency antigen-presenting
4
antigen-presenting cell-targeted
4
cell-targeted vaccines
4
vaccines increases
4
responses antibodies
4

Similar Publications

Background: Correct information is an essential tool to guide thoughts, attitudes, daily choices or more important decisions such as those regarding health. Today, a huge amount of information sources and media is available. Increasing possibilities of obtaining data also require understanding and positioning skills, particularly the ability to navigate the ocean of information and to choose what is best without becoming overwhelmed.

View Article and Find Full Text PDF

Background: The development of bivalent or multivalent vaccines offers a promising strategy for combating SARS-CoV-2 mutations.

Research Design And Methods: In this phase 2 trial, conducted from 1 December 2021, to 25 July 2023, 392 unvaccinated adults aged ≥18 years were randomized to receive a primary series of two doses and a booster dose of SCTV01C, a bivalent protein SARS-CoV-2 vaccine.

Results: Geometric mean titers (GMTs) of neutralizing antibodies (nAb) against live Alpha, Beta, Delta, and Omicron showed 85.

View Article and Find Full Text PDF

In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.

View Article and Find Full Text PDF

Background: The unrelenting emergence of SARS-CoV-2 variants has significantly challenged the efficacy of existing COVID-19 vaccines. Enhancing the stability and immunogenicity of the spike protein is critical for improving vaccine performance and addressing variant-driven immune evasion.

Methods: We developed an mRNA-based vaccine, RV-1730, encoding the Delta variant spike protein with the S6P mutation to enhance stability and immunogenicity.

View Article and Find Full Text PDF

Cancer therapeutic vaccines are used to strengthen a patient's own immune system by amplifying existing immune responses. Intralesional administration of the bacteria-based emm55 vaccine together with the PD1 checkpoint inhibitor produced a strong anti-tumor effect against the B16 melanoma murine model. However, it is not trivial to design an optimal order and frequency of injections for combination therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!