Pseudonochelin (), a siderophore from a marine-derived sp. bacterium, was discovered using genome mining and metabolomics technologies. A 5-aminosalicylic acid (5-ASA) unit, not previously found in siderophore natural products, was identified in . Annotation of a putative biosynthetic gene cluster combined with bioinformatics and isotopic enrichment studies enabled us to propose the biosynthesis of . Moreover, was found to display and antibacterial activity in an iron-dependent fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270686PMC
http://dx.doi.org/10.1021/acs.orglett.2c01408DOI Listing

Publication Analysis

Top Keywords

genome mining
8
mining metabolomics
8
pseudonochelin siderophore
8
marine-derived bacterium
8
metabolomics unveil
4
unveil pseudonochelin
4
siderophore 5-aminosalicylate
4
5-aminosalicylate marine-derived
4
bacterium pseudonochelin
4
siderophore marine-derived
4

Similar Publications

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

J Magn Reson Imaging

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC.

View Article and Find Full Text PDF

Mining genomic regions associated with stomatal traits and their candidate genes in bread wheat through genome-wide association study (GWAS).

Theor Appl Genet

January 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.

View Article and Find Full Text PDF

The biting midges Latreille, 1809 (Diptera: Ceratopogonidae) is highly relevant to epidemiology and public health, as it includes species that are potential vectors of human and animal arboviruses. The aim of this study was to investigate the presence of RNA viruses in species of the genus collected in the Carajás mining complex in the state of Pará. The biting midges were collected in the municipalities of Canaã dos Carajás, Curionópolis and Marabá and morphologically identified.

View Article and Find Full Text PDF

Mining of Candidate Genes and Developing Molecular Markers Associated with Pokkah Boeng Resistance in Sugarcane ( spp.).

Plants (Basel)

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.

Sugarcane Pokkah Boeng (PB), a fungal disease caused by spp., poses a significant threat to sugar industries globally. Breeding sugarcane varieties resistant to PB has become a priority, and the mining of PB resistance genes and the development of molecular markers provide a solid foundation for this purpose.

View Article and Find Full Text PDF

In our large-scale search for antimicrobial-producing bacteria, we isolated an actinomycete strain from rhizospheric soil of . The strain designated BP-8 showed noticeable antibacterial activity. BP-8 was subjected to a whole-genome analysis via a polyphasic taxonomy approach, and its antibacterial metabolite was identified by HRLS-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!