Several variants of the equation of state (EoS) for molten alkali halides are considered using the thermodynamic perturbation theory. Most attention is focused on taking into account the charge-induced dipole (or induction) term to pressure. The model of charged hard spheres of different diameters within the mean spherical approximation is used as a reference system. The value of the extra induction contribution to the pressure is about 5-10% of the Coulomb input and, thus, leads to a better agreement between the calculation results and experimental data. It is shown that the EoS through the energy gives superior results as compared to the experimental data on molten alkali halides near their melting points. Trends in density change with the ionic radii and the polarizabilities are analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c01614 | DOI Listing |
Materials (Basel)
January 2025
Department of Structural Materials and Construction Chemistry, University of Kassel, 34117 Kassel, Germany.
The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.
View Article and Find Full Text PDFMolecules
December 2024
School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Metallurgy and Energy Engineering, North China University of Science and Technology, Tangshan 063000, China.
The composition of TBFS is complex. It is categorized into low (W < 5%), medium (5% < W < 20%), and high-titanium slag (W > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to accumulate and contribute to environmental pollution.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
High-strength carbon fibers were recovered by a new method, involving the decomposition of the thermosetting resin part of carbon fiber-reinforced plastic (CFRP) by heating it in a mixture of sodium hydroxide (NaOH) and potassium hydroxide (KOH). Alkali molten hydroxide was prepared by heating the mixture of NaOH and KOH at various ratios (NaOH: KOH = 1:0, 3:1, 1:1, 1:3, 0:1) at 400C, and the CFRP was then heated with the aforementioned alkali molten hydroxide under a nitrogen atmosphere at 200-400C for 0-90 min. Subsequently, the CFRP was washed with distilled water and filtered to recover the carbon fibers, and its tensile strength was estimated.
View Article and Find Full Text PDFJACS Au
December 2024
Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!