Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical space communication has been proven to be a reliable relay satellite transmission system. The difficulty that occurs in RF satellite communication (SatCom) can be alleviated by using free-space optical (FSO) or laser SatCom. In this work, we analyze a proposed laser downlink relay SatCom model with existing channel turbulence employing intensity modulation and direct detection (IM/DD), and amplify-and-forward (AF) technology and compare it with the optical direct link SatCom. Accounting for atmospheric attenuation and turbulence, the effect of model parameters such as zenith angle, receiver aperture radius, best number of optical ground stations (OGSs), and end-to-end operating wavelength on system performance is investigated for different OGS height scenarios. We provide exact closed-form expressions for the proposed model and optimize system performance by selecting the best number of OGSs using a selective diversity technique that can boost the system signal-to-noise (SNR) by up to 37 dB (99.9%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.461652 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!