We demonstrate second-harmonic generation (SHG) microscopy excited by the ∼890-nm light frequency-doubled from a 137-fs, 19.4-MHz, and 300-mW all-fiber mode-locked laser centered at 1780 nm. The mode-locking at the 1.7-µm window is realized by controlling the emission peak of the gain fiber, and uses the dispersion management technique to broaden the optical spectrum up to 30 nm. The spectrum is maintained during the amplification and the pulse is compressed by single-mode fibers. The SHG imaging performance is showcased on a mouse skull, leg, and tail. Two-photon fluorescence imaging is also demonstrated on C. elegans labeled with green and red fluorescent proteins. The frequency-doubled all-fiber laser system provides a compact and efficient tool for SHG and fluorescence microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.455081DOI Listing

Publication Analysis

Top Keywords

shg fluorescence
8
fluorescence imaging
8
all-fiber mode-locked
8
mode-locked laser
8
890-nm-excited shg
4
imaging enabled
4
enabled all-fiber
4
laser demonstrate
4
demonstrate second-harmonic
4
second-harmonic generation
4

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Objectives: To study the healing response of rat Achilles tendon when lacerated or treated with intense therapeutic ultrasound (ITU) via utilization of multiphoton microscopy (MPM) imaging and histology.

Materials And Methods: The right Achilles tendon of each Sprague Dawley rat within a cohort was partially lacerated. 1 to 2 days post-surgery, each rat received ITU treatment of the Achilles tendon on either the right or left leg.

View Article and Find Full Text PDF

Novel Optical Criteria and Mechanisms of Critical Decline in Liver Regenerative Potential.

Cells

December 2024

Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia.

The most effective method of treating tumors localized in the liver remains resection. However, in the presence of concomitant pathology, the regenerative potential of the liver is significantly reduced. To date, there is insufficient fundamental data on the mechanisms responsible for the disruption of liver regeneration, and there is no effective method for assessing its regenerative potential.

View Article and Find Full Text PDF

Nonlinear multimode imaging is a versatile tool to realize complex structural and compositional information of biological samples. In this study, we presented a novel integrated multimode nonlinear optical microscopy system by using an Er3 + -doped femtosecond fiber laser. The system could perform second harmonic generation (SHG), third harmonic generation (THG), and three-photon fluorescence (3PEF) imaging modes simultaneously.

View Article and Find Full Text PDF

The rising incidence of head and neck cancer represents a serious global health challenge, requiring more accurate diagnosis and innovative surgical approaches. Multimodal nonlinear optical microscopy, combining coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) with deep learning-based analysis routines, offers label-free assessment of the tissue's morphochemical composition and allows early-stage and automatic detection of disease. For clinical intraoperative application, compact devices are required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!