Intrinsic improvement of iron (Fe) concentration in rice grains, called rice Fe biofortification, is a promising countermeasure against widespread human Fe deficiency. In this study, two novel rice Fe biofortification approaches are reported. The first approach (Y approach) involved the expression of maize YELLOW STRIPE 1 controlled by the HEAVY METAL ATPASE 2 promoter. The Y approach increased the polished grain Fe concentrations up to 4.8-fold compared with the non-transgenic (NT) line. The second approach (T approach) involved the expression of rice TRANSPORTER OF MUGINEIC ACID 1 controlled by the FERRIC REDUCTASE DEFECTIVE LIKE 1 promoter. The T approach increased the polished grain Fe concentrations by up to 3.2-fold. No synergistic increases in the polished grain Fe concentrations were observed when Y and T approaches were combined (YT approach). However, the polished grain Fe concentrations further increased by 5.1- to 9.3-fold compared with the NT line, when YT approach was combined with the endosperm-specific expression of FERRITIN (YTF approach), or when YTF approach was combined with the constitutive expression of NICOTIANAMINE SYNTHASE (YTFN approach). Total grain weight per plant in most Y, T, YT, and YTFN lines was comparable to that in the NT line, while it was significantly decreased in most YTF lines. The novel approaches reported in this study expand the portfolio of genetic engineering strategies that can be used for Fe biofortification in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erac214 | DOI Listing |
PLoS One
January 2025
Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Zhongshan Biological Breeding Laboratory, Yangzhou University, Yangzhou 225009, China.
The whiteness of rice grains (WRG) is a key indicator of appearance quality, directly impacting its commercial value. The trait is quantitative, influenced by multiple factors, and no specific genes have been cloned to date. In this study, we first examined the correlation between the whiteness of polished rice, cooked rice, and rice flour, finding that the whiteness of rice flour significantly correlated with both polished and cooked rice.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
As an environment-friendly material, graphene oxide nanosheet can effectively improve the polishing surface quality of single crystal diamond workpieces. However, the lubricating and chemical effects of graphene oxide nanosheets have an uncertain impact on the polishing material removal rate. In this paper, the graphene oxide-enhanced hybrid slurry was prepared with good stability.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China.
As a critical component of aero-engines, the processing quality of the blade has a significant impact on the engine's overall performance and service life. First, from the perspective of double abrasive grains, two finite element models-simultaneous and sequential scratches-are established. The interaction between the two abrasive grains affects not only the polishing force and chip formation but also the surface morphology of the processed workpiece.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!