Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Broadband near-infrared (NIR) light sources based on phosphor-converted light-emitting diodes (pc-LEDs) are desirable for various photonics applications, while developing thermally stable NIR phosphors remains a great challenge. Increasing the temperature accelerates the severe nonradiative relaxation process gorverned by the intrinsic energy gap law, which further suspends the efficient low-energy emission of Cr emitters in the inorganic lattice. To address this rule, several state-of-the-art strategies have been put forward in this perspective to modulate the critical law from the viewpoints of (1) crystal structure design, (2) defect engineering, (3) strengthened rigidity, and (4) energy transfer. This perspective suggests avenues for exploring novel broadband NIR phosphors with high thermal stability and will also stimulate further studies on NIR spectroscopy for high-power applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c01143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!