Poly(lactic--glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physicochemical properties are readily available via ring-opening polymerization. However, native PLGA polymers are hard to track as drug delivery carriers when delivered to subcellular spaces, due to the absence of an easily accessible "handle" for fluorescent labeling. Here we show a one-step, scalable, solvent-free, synthetic route to fluorescent blue (2-aminoanthracene), green (5-aminofluorescein), and red (rhodamine-6G) PLGA, in which every polymer chain in the sample is fluorescently labeled. The utility of initiator-labeled PLGA was demonstrated through the preparation of nanoparticles, capable of therapeutic subcellular delivery to T-helper-precursor-1 (THP-1) macrophages, a model cell line for determining biocompatibility and particle uptake. Super resolution confocal fluorescence microscopy imaging showed that dye-initiated PLGA nanoparticles were internalized to punctate regions and retained bright fluorescence over at least 24 h. In comparison, PLGA nanoparticles with 5-aminofluorescein introduced by conventional nanoprecipitation/encapsulation showed diffuse and much lower fluorescence intensity in the same cells and over the same time periods. The utility of this approach for drug delivery experiments was demonstrated through the concurrent imaging of the fluorescent drug doxorubicin (λ = 480 nm, λ = 590 nm) with carrier 5-aminofluorescein PLGA, also in THP-1 cells, in which the intracellular locations of the drug and the polymer could be clearly visualized. Finally, the dye-labeled particles were evaluated in an model, via delivery to the nematode , with bright fluorescence again apparent in the internal tract after 3 h. The results presented in this manuscript highlight the ease of synthesis of highly fluorescent PLGA, which could be used to augment tracking of future therapeutics and accelerate and characterization of delivery systems prior to clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.9b01014 | DOI Listing |
Small
January 2025
School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China.
Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.
View Article and Find Full Text PDFMater Horiz
January 2025
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, P. R. China.
Given that optical thermometers are widely used due to their unique advantages, this study aims to address critical challenges in existing technologies, such as insufficient sensitivity, limited temperature measurement ranges, and poor signal recognition capabilities. Herein, we develop a thermometer based on the fluorescence intensity ratio (FIR) of Sb-doped CsNaInCl (CsNaInCl:Sb). As the temperature increases from 203 to 323 K, the thermally induced transition from triplet to singlet self-trapped excitons (STEs) leads to enhanced 455 nm photoluminescence (PL) from singlet STE recombination.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, CHINA.
The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China.
Ulcerative colitis (UC), often referred to as "green cancer", is a chronic inflammatory bowel disease with an unclear etiology, closely associated with the imbalance of hydrogen sulfide (HS) and peroxynitrite (ONOO). HS exhibits anti-inflammatory effects at physiological levels, but excessive concentrations can compromise the intestinal barrier, while ONOO aggravates inflammation. To facilitate the molecular-level monitoring of these compounds in UC, we developed a novel fluorescent probe, , capable of simultaneously detecting HS and ONOO via distinct fluorescent channels in a cascade mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!