A series of thermally shrinkable polymer surface-enhanced Raman scattering (SERS) substrates were prepared with bimetallic Au and Ag (oxidized or not) films and with Au nanoparticles (AuNPs) located at different places in the layered structure to evaluate the synergistic effect of different known SERS amplification methods to enhance the Raman signal for low concentration dopamine detection. A bimetallic Au and Ag layered structure improved the Raman signal by 5 and 2 times compared to the single-layered Au and Ag films. Oxidizing the Ag layer prior to deposition of Au further improved the signal by a factor of 2, while adding AuNP on wrinkled films increased another 10 times the intensity of the Raman signal. It was found that the enhancement was another 10 times stronger when using AuNPs in combination with other means of enhancement such as with a silver underlayer or surface wrinkling. Wrinkling alone only gave a few-fold increase compared to a flat film, but the combination of wrinkling with AuNPs and a silver underlayer improved the SERS intensity by more than 3 orders of magnitude, showing the synergistic effect of these enhancement methods. The optimized sensors were then tested in dynamic SERS with low concentration dopamine solutions, where the signal showed characteristics of a digital SERS response. Raman spectra preprocessing and sorting software was developed to triage the SERS-active spectra from the null spectra, to count the detection events such as the ones observed in single molecule experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-022-04151-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!