The potential of bacterial contamination is commonly seen in biological and clinical laboratory surfaces, creating a need to detect the presence of bacteria on a surface. Various bacterial species have been found to naturally exist on surfaces, including , Typhimurium, and that were investigated in this study. Bacterial presence was identified from laboratory surfaces using a smartphone and low-cost components without culturing or staining. Autofluorescence from bacteria was quantified using a 405 nm LED as an excitation light source. A low-cost acrylic film could isolate the autofluorescence emission. ImageJ was used to process and analyze the images and quantify the emitted autofluorescence signal. This imaging platform successfully detected the presence of all three bacterial species from the heavily used laboratory surfaces. A trend of decreasing fluorescence signal was observed with decreasing bacterial concentration, and the limit of detection was 10 CFU cm. It could also distinguish from tap water, protein (bovine serum albumin), and NaCl solutions. This preliminary work emphasizes the ability to detect autofluorescence signals of bacteria and non-microbial surface contaminants using a cost-effective and straightforward imaging platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2an00358a | DOI Listing |
Alzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
Plasmon resonance plays an important role in improving the detection of biomolecules, and it is one of the focuses of research to use metal plasmon resonance to achieve fluorescence enhancement and to improve detection sensitivity. However, the problems of nondynamic tuning and fluorescence quenching of metal plasmon resonance need to be solved. Graphene surface plasmon resonance can be dynamically controlled, and the graphene adsorption of fluorescent molecules can avoid fluorescence quenching and greatly improve the fluorescence emission intensity.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Interactions between manganese dioxides (MnO) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120).
View Article and Find Full Text PDFMedComm (2020)
January 2025
The increased prevalence of methicillin-resistant (MRSA) and its biofilms poses a great threat to human health. Especially, -related osteomyelitis was hardly cured even by conventional antibiotics combined with surgical treatment. The development of novel structural antibiotics is urgently needed.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA.
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!