This study reveals that unexpected degradation of food oligosaccharides can occur during conventional glycomics workflows, including sample preparation and analysis by liquid chromatography-mass spectrometry (LC-MS). With the present investigation, we aim to alert the scientific community of the susceptibility of specific glycosidic linkages to degradation induced by heat and acid. Key standard oligosaccharides representing the major types found in foods (3'-sialyllactose and 6'-sialyl-N-acetyllactosamine for milk, raffinose and stachyose for legumes) were selected as model systems and underwent each of the following treatments independently: (1) labeled with the derivatizing agent 1-aminopyrene-3,6,8-trisulfonic (APTS) (followed by analysis with a capillary electrophoresis system coupled with a fluorescence detector), (2) dried from an acetonitrile-water mixture containing 0.1% trifluoroacetic acid, and (3) injected into an LC-MS system. We demonstrated that both raffinose and stachyose degraded during APTS-labeling by the acid in the labeling reagents. We also discovered that during centrifugal evaporation at 37 °C, all of the four nonderivatized oligosaccharides tested were partially degraded. Additionally, when the LC-MS eluent contained 0.1% formic acid, 3'-sialyllactose, raffinose, and stachyose underwent extensive in-source fragmentation during analysis. Lastly, we identified a simple strategy that can reduce the probability of incorrect oligosaccharide identification resulting from extensive in-source fragmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931006 | PMC |
http://dx.doi.org/10.38212/2224-6614.3393 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Department of Natural Science, Federal University of São João del-Rei, São João del-Rei, MG, 36301-160, Brazil. Electronic address:
Soybean utilization is limited by the presence of raffinose oligosaccharides (RFO), which are not digested by humans and cause gastrointestinal discomfort. This study explores the potential of α-galactosidases from Penicillium griseoroseum for RFO hydrolysis in soymilk. Two distinct α-galactosidase enzymes, designated α-Gal1 and α-Gal2, were purified using a combination of ion-exchange chromatography and native polyacrylamide gel electrophoresis.
View Article and Find Full Text PDFPlants (Basel)
October 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
The () genes, a novel cluster of plant-specific zinc-finger-dependent DNA-binding proteins, play a crucial role in regulating stress response and plant development. However, there has been little study focus on the role of the cucumber PLATZ family in assimilating loading in leaves. (1) In this study, a total of 12 genes were identified from the cucumber genome.
View Article and Find Full Text PDFProtein Expr Purif
February 2025
FSI Federal Research Centre Fundamentals of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia. Electronic address:
Heterogeneous expression of enzymes allows large-scale production with reduced costs. Changes in glycosylation often occur due to changes in the expression host. In the study, the catalytic and biochemical properties of Aspergillus awamori exo-inulinase 1 are compared for A.
View Article and Find Full Text PDF3 Biotech
October 2024
Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpet, Tamil Nadu India.
Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2024
Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China.
Soybean molasses, which contains high levels of raffinose family oligosaccharides (RFOs) such as stachyose and raffinose, is subjected to a process of bio-purification to remove sucrose while maintaining the RFOs, consequently increasing its value. This study employed morphological observation, physiological and biochemical studies, and molecular biology techniques to identify YA176, a yeast strain renowned for its effective bio-purification of soy molasses. Through single-factor and orthogonal experiments, optimal bio-purification conditions were established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!