We investigated each of the successive transformations of this material using calculations based on DFT. Possible structures produced from three reaction steps of the thermal treatment were simulated. Thermodynamic analysis was performed to assess the energy stability of each reaction. The dehydration of the interlamellar region confirmed the selective loss of water molecules, with axial HO being responsible for the first part of the mass loss experimentally observed in TG-DTA while the loss of equatorial HO molecules is observed above 150 °C. The reactions of the proposed intermediates after dehydration indicated that the formation of a zeolite SiO is thermodynamically unfavorable in relation to zeolite sodium silicate. Kinetic effects and new heat treatment protocols should be studied to improve the understanding of these materials. The final steps indicated that after the condensation of the layers, sodium silicate was formed together with quartz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp01245f | DOI Listing |
Sci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.
View Article and Find Full Text PDFMonatsh Chem
December 2023
Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria.
Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.
View Article and Find Full Text PDFFood Res Int
January 2025
Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina. Electronic address:
Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
CNRS: Centre National de la Recherche Scientifique, Chemistry, FRANCE.
Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni-Hg-Ni core (POCOP = κP,κC,κP´-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!