Interfacial enzyme reactions are common in Nature and in industrial settings, including the enzymatic deconstruction of poly(ethylene terephthalate) (PET) waste. Kinetic descriptions of PET hydrolases are necessary for both comparative analyses, discussions of structure-function relations and rational optimization of technical processes. We investigated whether the Sabatier principle could be used for this purpose. Specifically, we compared the kinetics of two well-known PET hydrolases, leaf-branch compost cutinase (LCC) and a cutinase from the bacterium (TfC), when adding different concentrations of the surfactant cetyltrimethylammonium bromide (CTAB). We found that CTAB consistently lowered the strength of enzyme-PET interactions, while its effect on enzymatic turnover was strongly biphasic. Thus, at gradually increasing CTAB concentrations, turnover was initially promoted and subsequently suppressed. This correlation with maximal turnover at an intermediate binding strength was in accordance with the Sabatier principle. One consequence of these results was that both enzymes had too strong intrinsic interaction with PET for optimal turnover, especially TfC, which showed a 20-fold improvement of at the maximum. LCC on the other hand had an intrinsic substrate affinity closer to the Sabatier optimum, and the turnover rate was 5-fold improved at weakened substrate binding. Our results showed that the Sabatier principle may indeed rationalize enzymatic PET degradation and support process optimization. Finally, we suggest that future discovery efforts should consider enzymes with weakened substrate binding because strong adsorption seems to limit their catalytic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131473 | PMC |
http://dx.doi.org/10.1021/jacsau.2c00204 | DOI Listing |
Nat Nanotechnol
December 2024
Université Toulouse III-Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse, France.
The advancement of high-performance fast-charging materials has significantly propelled progress in electrochemical capacitors (ECs). Electrochemical capacitors store charges at the nanoscale electrode material-electrolyte interface, where the charge storage and transport mechanisms are mediated by factors such as nanoconfinement, local electrode structure, surface properties and non-electrostatic ion-electrode interactions. This Review offers a comprehensive exploration of probing the confined electrochemical interface using advanced characterization techniques.
View Article and Find Full Text PDFDrug Saf
December 2024
Service d'Audiologie and d'Explorations Otoneurologiques, Hospices Civils de Lyon, Lyon, France.
Introduction: Improving adverse events following immunisation (AEFI) detection is vital for vaccine safety surveillance, as an early safety signal can help minimize risks. In February 2022, the World Health Organization reported a preliminary signal on sudden sensorineural hearing loss (SSNHL) following coronavirus disease 2019 (COVID-19) vaccination, 54 million persons in France received at least one dose, covering 78.8% of the population within a year.
View Article and Find Full Text PDFPLoS One
December 2024
National Computing Infrastructure, Australian National University, Canberra, Australia.
Environmental challenges are rarely confined to national, disciplinary, or linguistic domains. Convergent solutions require international collaboration and equitable access to new technologies and practices. The ability of international, multidisciplinary and multilingual research teams to work effectively can be challenging.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
Understanding the relationship of competitive adsorption between reactants is the prerequisite for high activity and selectivity in heterogeneous catalysis, especially the difference between the adsorption energies (E) of two reactive intermediates in Langmuir-Hinshelwood (L-H) models. Using oxidative dehydrogenation of hydrogen sulfide (HS-ODH) as a probe, we develop various metal single atoms on nitrogen-doped carbon (M-NDC) catalysts for controlling E-HS, E-O and investigating the difference in activity and selectivity. Combining theoretical and experimental results, a Sabatier relationship between the catalytic performance and E-O/E-HS emerges.
View Article and Find Full Text PDFLangmuir
December 2024
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!