Predicting epitopes for vaccine development using bioinformatics tools.

Ther Adv Vaccines Immunother

Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang, Indonesia.

Published: May 2022

Epitope-based DNA vaccine development is one application of bioinformatics or studies, that is, computational methods, including mathematical, chemical, and biological approaches, which are widely used in drug development. Many studies have been conducted to analyze the efficacy, safety, toxicity effects, and interactions of drugs. In the vaccine design process, studies are performed to predict epitopes that could trigger T-cell and B-cell reactions that would produce both cellular and humoral immune responses. Immunoinformatics is the branch of bioinformatics used to study the relationship between immune responses and predicted epitopes. Progress in immunoinformatics has been rapid and has led to the development of a variety of tools that are used for the prediction of epitopes recognized by B cells or T cells as well as the antigenic responses. However, the approach to vaccine design is still relatively new; thus, this review is aimed at increasing understanding of the importance of studies in the design of vaccines and thereby facilitating future research in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130818PMC
http://dx.doi.org/10.1177/25151355221100218DOI Listing

Publication Analysis

Top Keywords

vaccine development
8
vaccine design
8
immune responses
8
predicting epitopes
4
vaccine
4
epitopes vaccine
4
development
4
development bioinformatics
4
bioinformatics tools
4
tools epitope-based
4

Similar Publications

Ongoing research and development efforts are currently focused on creating COVID-19 vaccines using a variety of platforms. Among these, mRNA technology stands out as a cuttingedge method for vaccine development. There is a growing public awareness of mRNA and its potential in vaccine development.

View Article and Find Full Text PDF

Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.

View Article and Find Full Text PDF

Immunoinformatics, an integrative field consisting of bioinformatics and immunology, has showcased its potential in addressing zoonotic diseases, as evidenced during the Coronavirus disease 2019 (COVID-19) pandemic. However, its application in livestock health remains largely untapped. This opinion commentary explores how immunoinformatics, combined with advancements in genomics, multi-omics integration, and genome editing technologies, can revolutionize livestock management by enhancing disease resistance, vaccine development, and productivity.

View Article and Find Full Text PDF

Enhanced immunogenicity of a BoHV-1 gG-/tk- vaccine.

Vaccine

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of development of veterinary diagnostic products, Ministry of Agriculture and Rural Affair, Wuhan 430070, China. Electronic address:

Bovine herpesvirus type 1 (BoHV-1) is a widespread respiratory infection that significantly impacts cattle health worldwide. To address this issue in China, we previously developed a novel double gene-deleted vaccine targeting gG and tk. In this study, we further evaluated the efficacy of this vaccine by challenging vaccinated cattle with a prevalent wild-type BoHV-1 strain and comparing its effectiveness against a commercially available inactivated BoHV-1 vaccine.

View Article and Find Full Text PDF

Purification immunoglobulin yolk anti avian influenza H5N1 in poultry using hydrophobic interaction chromatography.

Poult Sci

January 2025

Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, West Java, 40132, Indonesia; Faculty of Pharmacy, Universitas Bhakti Kencana, West Java, 40614, Indonesia.

Avian influenza is a significant threat to the poultry industry, and it has become an outbreak in many countries because of its mortality and morbidity. Concerns about the history of avian influenza outbreaks has prompted all countries to enhance their independence in pharmaceutical and biological components as a preparedness measure for any potential occurrences. The production of antibodies such as IgY is a potential alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!