The detection of dissolved gases in oil is an important method for the analysis of transformer fault diagnosis. In this article, the potential-doped structure of the Ag cluster on the HfSe monolayer and adsorption behavior of CO and CH upon Ag-HfSe were studied theoretically. Herein, the binding energy, adsorption energy, band structure, density of state (DOS), partial density of state (PDOS), Mulliken charge analysis, and frontier molecular orbital were investigated. The results showed that the adsorption effect on CH is stronger than that on CO. The electrical sensitivity and anti-interference were studied based on the bandgap and adsorption energy of gases. In particular, there is an increase of 55.49% in the electrical sensitivity of CH after the adsorption. Compared to the adsorption energy of different gases, it was found that only the adsorption of the CH system is chemisorption, while that of the others is physisorption. It illustrates the great anti-interference in the detection of CH. Therefore, the study explored the potential of HfSe-modified materials for sensing and detecting CO and CH to estimate the working state of power transformers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133379PMC
http://dx.doi.org/10.3389/fchem.2022.911170DOI Listing

Publication Analysis

Top Keywords

adsorption energy
12
adsorption
8
density state
8
electrical sensitivity
8
energy gases
8
gas sensing
4
sensing mechanism
4
mechanism adsorption
4
adsorption properties
4
properties molecules
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

Surface curvature-driven adsorption-reduction mechanism over hollow N-doped carbon enhances recovery of precious metal ions from wastewater.

Environ Res

January 2025

College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, P.R. China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, P.R. China. Electronic address:

The recovery of precious metal ions (PMI) from wastewater has great significances from both economic and environmental perspectives. However, current recovery methods face limitations, including low efficiency and selectivity, as well as challenges in practical applications. In this study, hollow N-doped carbon spheres (HNC) are proved to be promising for improving anionic AuCl and PdCl recovery via the curvature effect, outperforming non-curved carbon (commercial active carbon and carbon nanosheet) due to their unique curvature effect.

View Article and Find Full Text PDF

Fully biobased and robust antibacterial cellulose aerogel for uranium extraction.

Int J Biol Macromol

January 2025

Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Developing efficient adsorbent is imperative for the utilization of uranium resources in seawater. Marine microorganisms and bacteria play an important role in the process of adsorption of uranium. In this work, a completely bio-based antimicrobial aerogel (quaternary cellulose/chitosan aerogel-QCNF/CS) was prepared by cross-linking quaternary cellulose nanofibers (QCNF) and chitosan (CS) via citric acid (CA).

View Article and Find Full Text PDF

The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!