Unlabelled: In this study, peanut hulls powder (PHP) was treated via mechanical activation (MA) and divided into three groups (control, PHP150 and PHP250). Physicochemical properties including mean particle size distribution (MPSD), powder properties, solubility and in vitro protein digestibility of PHP were then investigated. The results showed that MA could decrease the particle size of PHP by destroying its crystal structure, resulting in an increase of amorphization and a decrease of crystallinity and crystalline size. The results of in vitro protein digestibility and crude fiber contents showed that MA increased the protein digestibility of PHP by 43.32% and 74.70% ( < 0.05), while crude fiber content was decreased by 0.42% and 26.65% ( < 0.05). These findings indicated a large application potential of MA in PHP treatment.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01084-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133287 | PMC |
http://dx.doi.org/10.1007/s10068-022-01084-1 | DOI Listing |
J Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.
Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
World J Gastroenterol
January 2025
School of Health Sciences, Universidad Internacional de La Rioja, Logroño 26006, La Rioja, Spain.
This article comments on the work by Soresi and Giannitrapani. The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) is the use of glucagon-like peptide 1 receptor agonists, especially when used in combination therapy. However, despite their notable efficacy, these drugs were not initially designed to target MASLD directly.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Carmen Laboratory, INSERM Unit 1060-Lyon 1 University, Pierre Benite 69310, France.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent liver pathology in need of novel pharmacological treatments to complement lifestyle-based interventions. Nuclear receptor agonists have been under scrutiny as potential pharmacological targets and as of today, resmetirom, a thyroid hormone receptor b agonist, is the only approved agent. The dual PPAR α and δ agonist elafibranor has also undergone extensive clinical testing, which reached the phase III clinical trial but failed to demonstrate a beneficial effect on MASLD.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.
Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!