This study evaluated the influence of acute water ingestion and maintaining an upright posture on raw bioimpedance and subsequent estimates of body fluids and composition. Twenty healthy adults participated in a randomized crossover study. In both conditions, an overnight food and fluid fast was followed by an initial multi-frequency bioimpedance assessment (InBody 770). Participants then ingested 11 mL/kg of water (water condition) or did not (control condition) during a 5-minute period. Thereafter, bioimpedance assessments were performed every 10 minutes for one hour with participants remaining upright throughout. Linear mixed effects models were used to examine the influence of condition and time on raw bioimpedance, body fluids, and body composition. Water consumption increased impedance of the arms but not trunk or legs. However, drift in leg impedance was observed, with decreasing values over time in both conditions. No effects of condition on body fluids were detected, but total body water and intracellular water decreased by ~0.5 kg over time in both conditions. Correspondingly, lean body mass did not differ between conditions but decreased over the measurement duration. The increase in body mass in the water condition was detected exclusively as fat mass, with final fat mass values ~1.3 kg higher than baseline and also higher than the control condition. Acute water ingestion and prolonged standing exert practically meaningful effects on relevant bioimpedance variables quantified by a modern, vertical multi-frequency analyzer. These findings have implications for pre-assessment standardization, methodological reporting, and interpretation of assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124033PMC
http://dx.doi.org/10.2478/joeb-2022-0003DOI Listing

Publication Analysis

Top Keywords

acute water
12
water ingestion
12
raw bioimpedance
12
body fluids
12
water
9
influence acute
8
ingestion prolonged
8
prolonged standing
8
bioimpedance subsequent
8
body
8

Similar Publications

Background: Few studies have investigated associations between per- and polyfluoroalkyl substances (PFAS) and childhood cancers. Detectable levels of PFAS in California water districts were reported in the Third Unregulated Contaminant Monitoring Rule for 2013-2015.

Methods: Geocoded residences at birth were linked to corresponding water district boundaries for 10,220 California-born children (aged 0-15 years) diagnosed with cancers (2000-2015) and 29,974 healthy controls.

View Article and Find Full Text PDF

Species interactions can contribute to species turnover when the outcomes of the interactions are context dependent (e.g., change along environmental gradients).

View Article and Find Full Text PDF

The aim of our research was to understand the impact of ochratoxin A (OTA) exposure on various physiological and behavioral aspects in adult Wistar rats, and to evaluate the efficacy of a essential oil (EOC) treatment in restoring the damage caused by this toxin. The essential oils were extracted by hydrodistillation, a yield of 12.70% was obtained for EOC, and the GC-MS characterization of this essential oil revealed that its principal major components are eugenol (80.

View Article and Find Full Text PDF

Organophosphorus (OP) pesticides (e.g., parathion) and nerve agents (e.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is characterized by various pathological features including amyloid-β deposition and tau hyperphosphorylation, with cerebral microvascular dysfunction likely playing a role in its progression.
  • Researchers investigated the microvascular responses and potassium channel activity in an AD mouse model induced by streptozotocin (STZ), using behavioral tests and cellular assays.
  • The study found that STZ-AD mice showed poorer performance on behavioral tests and had impaired microvascular responses, which were further deteriorated by exposure to soluble Aβ, indicating a potential link between microvascular dysfunction and AD pathology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!