This current study was performed to determine the influences of plant spacing, Nitrogen (N) fertilization rate and their effect, on growth traits, yield, and yield components of cotton ( L.) cv. Giza 97 during the 2019 and 2020 seasons. A split plot experiment in three replicates was utilized whereas the cotton seeds were planted at 20, 30, and 40 cm, as main plots and nitrogen at 75, 100, and 125%, was in subplots. The results revealed that the planting spacing at 40 cm significantly ( ≤ 0.01) increased plant height, number of fruiting branches per plant, number of bolls per plant, boll weight (BW), lint percentage (L%), seed cotton yield (SCY), lint cotton yield (LCY), seed index and lint index by 165.68 cm, 20.92, 23.93, 3.75 g, 42.01%, 4.24 ton/ha, 5.16 ton/ha, 12.05, 7.86, respectively, as average in both seasons. The application of N fertilizer rate at 125% caused a maximum increase in growth and yield parameters i.e., plant height (169.08 cm), number of vegetative branches (2.67), number of fruiting branches per plant (20.82), number bolls per fruiting branch (1.39), number of bolls per plant (23.73), boll weight (4.1 g), lint percent (41.9%), seed index (11.8 g), and lint index (8.2), while the plants treated with 100% N rates exhibited highest seed cotton yield (4.3 ton/ha) and lint cotton yield (5.6 ton/ha), as average in both seasons. Combining plant spacing at 40 cm between plants with a 100% N fertilizer rate recorded the highest lint cotton yield (5.67 ton/ha), while the highest seed cotton yield (4.43 and 4.50 ton/ha) was obtained from 125% N fertilizer rate under planting spacing 20 and 40 cm, respectively. Conclusively, a wide density (40 cm) with 125% N is a promising option for improved biomass, cotton growth, yield, physiological traits, and fiber quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135022PMC
http://dx.doi.org/10.3389/fpls.2022.916734DOI Listing

Publication Analysis

Top Keywords

cotton yield
24
plant spacing
12
number bolls
12
seed cotton
12
lint cotton
12
fertilizer rate
12
yield
11
cotton
10
spacing nitrogen
8
plant
8

Similar Publications

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Soybean looper (SBL), (Walker 1858) (Lepidoptera: Noctuidae), is one of the most damaging insect pests of soybean, (L.) Merr., in the mid-south region of the United States, and causes significant economic losses to cotton, sunflower, tomato, and tobacco crops in the United States, Brazil, and Argentina.

View Article and Find Full Text PDF

Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane.

Int J Biol Macromol

December 2024

State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H.

View Article and Find Full Text PDF

Background: Early-maturity cotton varieties have the potential to be cultivated in a wider geographical area, extending as far north as 46 °N in China, and confer to address the issue of competition for land between grain and cotton by reducing their whole growth period (WGP). Therefore, it is of great importance to develop cotton varieties with comprehensive early maturity and high yield following investigating the regulatory mechanism underlying early maturity and identifying early maturity-related genes.

Results: In this study, 'SCRC19' and 'SCRC21', two excellent cultivars with significantly different WGP, along with their recombinant inbred lines (RILs) consisting of 150 individuals were re-sequenced, yielding 4,092,677 high-quality single nucleotide polymorphisms (SNPs) and 794 bin markers across 26 chromosomes.

View Article and Find Full Text PDF

Genotypic variability in cotton's transpiration response under progressive soil drying.

Front Plant Sci

December 2024

Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Narrabri, NSW, Australia.

Introduction: Crop yields in food and fibre production systems throughout the world are significantly limited by soil water deficits. Identifying water conservation mechanisms within existing genotypes is pivotal in developing varieties with improved performance in water-limited conditions. The objective of this study was to screen Australian germplasm for variability in the transpiration response to progressive soil drying using a glasshouse dry-down experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!