Activity of Peptide Antibiotics in Combination With Other Antimicrobials on Extensively Drug-Resistant in the Planktonic and Biofilm Cell.

Front Pharmacol

Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China.

Published: May 2022

is one of the most dangerous opportunistic pathogens in the global health care setup. Its drug resistance and biofilm-forming capability are often associated with chronic infections that are difficult to treat. Therefore, the clinical treatments for highly drug-resistant are limited. Antimicrobial peptides are broad-spectrum antibacterial agents combined with antibiotics that minimize selective bacterial resistance and enhance antibacterial efficacy. The current study evaluated the synergistic antibacterial activities of clinically important peptide antibiotics combined with other antimicrobials against nine extensively drug-resistant strains in planktonic and biofilm cells . Polymyxin B and E combined with imipenem showed 100% synergy in the planktonic cell with the checkerboard. Moreover, polymyxin E with rifampicin and bacitracin with imipenem or meropenem showed 100% additive effects. In the biofilm cell, polymyxin B and E combined with azithromycin showed 100% synergy, when vancomycin with azithromycin, rifampicin, and bacitracin with azithromycin or rifampicin, and teicoplanin with tigecycline or rifampicin, all showed 100% additive effects. Therefore, peptide antibiotics combined with other antimicrobials have synergistic or additive effects on extensively drug-resistant in planktonic and biofilm cells. In addition, the combination of polymyxins with carbapenems or azithromycin could be an ideal therapy against extensively drug-resistant infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130746PMC
http://dx.doi.org/10.3389/fphar.2022.890955DOI Listing

Publication Analysis

Top Keywords

extensively drug-resistant
16
peptide antibiotics
12
planktonic biofilm
12
additive effects
12
antimicrobials extensively
8
drug-resistant planktonic
8
biofilm cell
8
antibiotics combined
8
combined antimicrobials
8
biofilm cells
8

Similar Publications

Background: Wild game meat has over the years gained popularity across the globe as it is considered a food source with high protein content, low fat content, and a balanced composition of fatty acids and minerals, which are requirements for a healthy diet. Despite this popularity, there is a concern over its safety as many species of wildlife are reservoirs of zoonotic diseases including those of bacterial origin, more so antibiotic-resistant bacteria.

Methods: This study aimed to describe the prevalence of antibiotic-resistant bacteria in mammalian wild game, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most aggressive brain tumor malignancy in adults, accounting for nearly 50% of all gliomas. Current medications for GBM frequently lead to drug resistance.

Objectives: Umbelliferone (UMB) is found extensively in many plants and shows numerous pharmacological actions against inflammation, degenerative diseases and cancers.

View Article and Find Full Text PDF

Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.

View Article and Find Full Text PDF

The synthetic approach based on a sequence of Buchwald-Hartwig cross-coupling and annulation through intramolecular oxidative cyclodehydrogenation has been used for the construction of novel 4-alkyl-4-thieno[2',3':4,5]pyrrolo[2,3-]quinoxaline derivatives. For the first time, these polycyclic compounds were evaluated for antimycobacterial activity, including extensively drug-resistant strains. A reasonable bacteriostatic effect against HRv was demonstrated.

View Article and Find Full Text PDF

Currently, a global health crisis is being caused by microbial resistance, in which plays a crucial role, being considered the highest-priority microorganism by the World Health Organization (WHO) for discovering new antibiotics. As a result, phytochemicals have emerged as a potential alternative to combat resistant strains, since they can exert antimicrobial activity through various mechanisms and, at the same time, represent a more natural and safe option. This study analyzes the antimicrobial effects of guava leaf extract in ten clinical isolates of extensively drug-resistant (XDR) , using the agar diffusion technique and the microdilution method to determine the minimum inhibitory concentrations (MICs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!