Phishing attacks aim to steal confidential information using sophisticated methods, techniques, and tools such as phishing through content injection, social engineering, online social networks, and mobile applications. To avoid and mitigate the risks of these attacks, several phishing detection approaches were developed, among which deep learning algorithms provided promising results. However, the results and the corresponding lessons learned are fragmented over many different studies and there is a lack of a systematic overview of the use of deep learning algorithms in phishing detection. Hence, we performed a systematic literature review (SLR) to identify, assess, and synthesize the results on deep learning approaches for phishing detection as reported by the selected scientific publications. We address nine research questions and provide an overview of how deep learning algorithms have been used for phishing detection from several aspects. In total, 43 journal articles were selected from electronic databases to derive the answers for the defined research questions. Our SLR study shows that except for one study, all the provided models applied supervised deep learning algorithms. The widely used data sources were URL-related data, third party information on the website, website content-related data, and email. The most used deep learning algorithms were deep neural networks (DNN), convolutional neural networks, and recurrent neural networks/long short-term memory networks. DNN and hybrid deep learning algorithms provided the best performance among other deep learning-based algorithms. 72% of the studies did not apply any feature selection algorithm to build the prediction model. PhishTank was the most used dataset among other datasets. While Keras and Tensorflow were the most preferred deep learning frameworks, 46% of the articles did not mention any framework. This study also highlights several challenges for phishing detection to pave the way for further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9125357PMC
http://dx.doi.org/10.1007/s10115-022-01672-xDOI Listing

Publication Analysis

Top Keywords

deep learning
36
phishing detection
24
learning algorithms
24
deep
10
learning
9
phishing
8
systematic literature
8
literature review
8
algorithms provided
8
overview deep
8

Similar Publications

Deep learning in integrating spatial transcriptomics with other modalities.

Brief Bioinform

November 2024

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.

View Article and Find Full Text PDF

Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy.

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

Human-induced global warming, primarily attributed to the rise in atmospheric CO, poses a substantial risk to the survival of humanity. While most research focuses on predicting annual CO emissions, which are crucial for setting long-term emission mitigation targets, the precise prediction of daily CO emissions is equally vital for setting short-term targets. This study examines the performance of 14 models in predicting daily CO emissions data from 1/1/2022 to 30/9/2023 across the top four polluting regions (China, India, the USA, and the EU27&UK).

View Article and Find Full Text PDF

Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!