Time resolved spectroscopy provides unique insight into the structure and function of cobalamins. In these experiments, the cobalamin is initially excited by a short "pump" pulse in the UV-visible region and then characterized at some later time using a short "probe" pulse. The emphasis in this chapter is on both UV-visible and X-ray probe pulses, with a particular focus on the unique information provided by the latter. The principles of time-resolved spectroscopy are reviewed, with an emphasis on ultrafast measurements (time scales less than ~10ps) to characterize short-lived cobalamin excited states. Several practical considerations are discussed, with a focus on the technical details that are necessary to obtain high quality, interpretable data. These include sample delivery, polarization, and excitation power. Some of the theoretical approaches to interpreting data are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2022.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!