Organelle positioning in cells is associated with various metabolic functions and signaling in unicellular organisms. Specifically, the microalga Chlamydomonas reinhardtii repositions its mitochondria, depending on the levels of inorganic carbon. Mitochondria are typically randomly distributed in the Chlamydomonas cytoplasm, but relocate toward the cell periphery at low inorganic carbon levels. This mitochondrial relocation is linked with the carbon-concentrating mechanism, but its significance is not yet thoroughly understood. A genotypic understanding of this relocation would require a high-throughput method to isolate rare mutant cells not exhibiting this relocation. However, this task is technically challenging due to the complex intracellular morphological difference between mutant and wild-type cells, rendering conventional non-image-based high-event-rate methods unsuitable. Here, we report our demonstration of intelligent image-activated cell sorting by mitochondrial localization. Specifically, we applied an intelligent image-activated cell sorting system to sort for C. reinhardtii cells displaying no mitochondrial relocation. We trained a convolutional neural network (CNN) to distinguish the cell types based on the complex morphology of their mitochondria. The CNN was employed to perform image-activated sorting for the mutant cell type at 180 events per second, which is 1-2 orders of magnitude faster than automated microscopy with robotic pipetting, resulting in an enhancement of the concentration from 5% to 56.5% corresponding to an enrichment factor of 11.3. These results show the potential of image-activated cell sorting for connecting genotype-phenotype relations for rare-cell populations, which require a high throughput and could lead to a better understanding of metabolic functions in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.24661 | DOI Listing |
Lab Chip
September 2023
Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
Biosens Bioelectron
January 2023
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA. Electronic address:
Classification and sorting of cells using image-activated cell sorting (IACS) systems can bring significant insight to biomedical sciences. Incorporating deep learning algorithms into IACS enables cell classification and isolation based on complex and human-vision uninterpretable morphological features within a heterogeneous cell population. However, the limited capabilities and complicated implementation of deep learning-assisted IACS systems reported to date hinder the adoption of the systems for a wide range of biomedical research.
View Article and Find Full Text PDFCytometry A
January 2023
Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
Intelligent image-activated cell sorting (iIACS) has enabled high-throughput image-based sorting of single cells with artificial intelligence (AI) algorithms. This AI-on-a-chip technology combines fluorescence microscopy, AI-based image processing, sort-timing prediction, and cell sorting. Sort-timing prediction is particularly essential due to the latency on the order of milliseconds between image acquisition and sort actuation, during which image processing is performed.
View Article and Find Full Text PDFCytometry A
December 2022
Department of Chemistry, The University of Tokyo, Tokyo, Japan.
Organelle positioning in cells is associated with various metabolic functions and signaling in unicellular organisms. Specifically, the microalga Chlamydomonas reinhardtii repositions its mitochondria, depending on the levels of inorganic carbon. Mitochondria are typically randomly distributed in the Chlamydomonas cytoplasm, but relocate toward the cell periphery at low inorganic carbon levels.
View Article and Find Full Text PDFEnviron Sci Technol
June 2021
Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
In the past few decades, microalgae-based bioremediation methods for treating heavy metal (HM)-polluted wastewater have attracted much attention by virtue of their environment friendliness, cost efficiency, and sustainability. However, their HM removal efficiency is far from practical use. Directed evolution is expected to be effective for developing microalgae with a much higher HM removal efficiency, but there is no non-invasive or label-free indicator to identify them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!