Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities.
Results: Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N-acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N-hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time.
Conclusions: Baker's yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N-acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148506 | PMC |
http://dx.doi.org/10.1186/s12934-022-01831-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!