Background: Parasites interact with their host through "direct" and/or "indirect" mechanisms. Plasmodium, for example, either mediates direct physical interactions with host factors or triggers the immune system of the host indirectly, leading to changes in infectious outcomes. Long non-coding RNAs (lncRNAs) participate in regulating biological processes, especially host-pathogen interactions. However, research on the role of host lncRNAs during Plasmodium infection is limited.

Methods: A RNA sequencing method (RNA-seq) was used to confirm the differential expression profiles of lncRNAs in Plasmodium yeolii 17XL (P.y17XL)-infected BALB/c mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to elucidate the potential functions of Plasmodium-induced genes. Subsequently, the effect of specific lncRNAs on the modulation of immune-related signaling pathways in malaria was determined by fluorescence-activated cell sorting, western blot and enzyme-linked immunosorbent assay.

Results: The data showed that in P.y17XL-infected BALB/c mice, Plasmodium upregulated the expression of 132 lncRNAs and downregulated the expression of 159 lncRNAs. Differentially expressed lncRNAs clearly associated with malaria infection were annotated, including four novel dominant lncRNAs: ENMSUSG00000111521.1, XLOC_038009, XLOC_058629 and XLOC_065676. GO and KEGG pathway analyses demonstrated that these four differentially expressed lncRNAs were associated with co-localized/co-expressed protein-coding genes that were totally enriched in malaria and with the transforming growth factor beta (TGF-β) signaling pathway. Using the models of P.y17XL-infected BALB/c mice, data certified that the level of TGF-β production and activation of TGF-β/Smad signaling pathway were obviously changed in malaria infection.

Conclusions: These differentially expressed immune-related genes were deemed to have a role in the process of Plasmodium infection in the host via dendritic/T regulatory cells and the TGF-β/Smad signaling pathway. The results of the present study confirmed that Plasmodium infection-induced lncRNA expression is a novel mechanism used by Plasmodium parasites to modify host immune signaling. These results further enhance current understanding of the interaction between Plasmodium and host cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148527PMC
http://dx.doi.org/10.1186/s13071-022-05298-4DOI Listing

Publication Analysis

Top Keywords

py17xl-infected balb/c
12
balb/c mice
12
differentially expressed
12
signaling pathway
12
plasmodium
9
lncrnas
9
host
8
long non-coding
8
lncrnas plasmodium
8
plasmodium infection
8

Similar Publications

Macrophage migration inhibitory factor contributes to immunopathogenesis during 17XL infection.

Front Cell Infect Microbiol

September 2022

Laboratorio de Inmunidad Innata, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Estado de México, Mexico.

Macrophage migration inhibitory factor (MIF) is a cytokine recognized regulator of the inflammatory immune response associated with several immune cells that produce inflammatory cytokines such as IL-1β, IL-6, IL-12, IL-18, and TNF-α. This study aimed to understand the effect of MIF on the immune response and pathogenesis during infection. Wild-type (Wt) and MIF knockout ( ) mice were intravenously infected with 1×10 () 17XL-parasitized red blood cells.

View Article and Find Full Text PDF

Immunomodulatory role of chloroquine and pyrimethamine in Plasmodium yoelii 17XL infected mice.

Scand J Immunol

January 2007

Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México D.F.

Chloroquine (CLQ) and Pyrimethamine (PYR) are used for the treatment of malaria and some autoimmune diseases; although their mechanism of action is only partially understood, their therapeutic effectiveness in the second case has been attributed to their ability to increase apoptosis of T lymphocytes. In view of the potential for immunomodulation during malaria chemotherapy, we investigated the effects of CLQ and PYR treatment on lymphocyte apoptosis and cytokine expression during infection with blood-stage Plasmodium. This work shows that infection of BALB/c mice with Plasmodium yoelii 17XL (Py17XL) reduced apoptosis in spleen cells but when infected mice were treated with CLQ, apoptosis of B and T lymphocytes increased significantly via a Fas-mRNA expression independent mechanism associated with downregulation of Bcl-2 expression, whereas treatment with PYR increased apoptosis to a lesser extent and only in B lymphocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!