Background: The autoimmune regulator (Aire) gene is critical for the appropriate establishment of central immune tolerance. As one of the main controllers of promiscuous gene expression in the thymus, Aire promotes the expression of thousands of downstream tissue-restricted antigen (TRA) genes, cell adhesion genes and transcription factor genes in medullary thymic epithelial cells (mTECs). Despite the increasing knowledge about the role of Aire as an upstream transcriptional controller, little is known about the mechanisms by which this gene could be regulated.

Results: Here, we assessed the posttranscriptional control of Aire by miRNAs. The in silico miRNA-mRNA interaction analysis predicted thermodynamically stable hybridization between the 3'UTR of Aire mRNA and miR-155, which was confirmed to occur within the cellular milieu through a luciferase reporter assay. This finding enabled us to hypothesize that miR-155 might play a role as an intracellular posttranscriptional regulator of Aire mRNA. To test this hypothesis, we transfected a murine mTEC cell line with a miR-155 mimic in vitro, which reduced the mRNA and protein levels of Aire. Moreover, large-scale transcriptome analysis showed the modulation of 311 downstream mRNAs, which included 58 TRA mRNAs. Moreover, miR-155 mimic-transfected cells exhibited a decrease in their chemotaxis property compared with control thymocytes.

Conclusion: Overall, the results indicate that miR-155 may posttranscriptionally control Aire mRNA, reducing the respective Aire protein levels; consequently, the levels of mRNAs encode tissue-restricted antigens were affected. In addition, miR-155 regulated a crucial process by which mTECs allow thymocytes' migration through chemotaxis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145475PMC
http://dx.doi.org/10.1186/s12864-022-08631-4DOI Listing

Publication Analysis

Top Keywords

regulator aire
12
aire mrna
12
aire
10
posttranscriptional control
8
autoimmune regulator
8
tissue-restricted antigen
8
genes medullary
8
medullary thymic
8
thymic epithelial
8
epithelial cells
8

Similar Publications

Background: Caroli's disease, an autosomal recessive, hereditary-related disorder, is a rare disease, in which the diagnosis is based primarily on medical imaging and pathophysiological examinations. It is characterized by intrahepatic cystic dilation or cysts. Hepatic resection of diseased lobes can cure or avoid the risk of malignancy.

View Article and Find Full Text PDF

Medullary thymic epithelial cells (mTECs) play a crucial role in suppressing the onset of autoimmunity by eliminating autoreactive T cells and promoting the development of regulatory T cells in the thymus. Although mTECs undergo turnover in adults, the molecular mechanisms behind this process remain unclear. This study describes the direct and indirect roles of receptor activator of NF-κB (RANK) and CD40 signaling in TECs in the adult thymus.

View Article and Find Full Text PDF

Aire attenuate collagen-induced arthritis by suppressing T follicular helper cells through ICOSL.

Int Immunopharmacol

January 2025

Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China. Electronic address:

Objective: To assess the expression levels of autoimmune regulator (Aire) and inducible costimulator molecule ligand (ICOSL), as well as T follicular helper (Tfh) cell numbers in rheumatoid arthritis (RA) patients, and to explore their relationship with RA severity. We also aimed to investigate the effect of Aire on arthritis and its underlying mechanisms.

Methods: The expression levels of Aire, ICOSL, and Tfh cell numbers were measured in RA patients.

View Article and Find Full Text PDF

T cell immune tolerance is established in part through the activity of the Auto-immune Regulator (AIRE) transcription factor in the medullary Thymic Epithelial Cells (mTEC) of the thymus. AIRE induces expression of SELF peripheral tissue-specific antigens for presentation to naïve T cells to promote activation/deletion of potentially autoreactive T cells. We show, for the first time to our knowledge, that tumors mimic the role of AIRE in mTEC to evade immune rejection.

View Article and Find Full Text PDF

HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!