A high areal capacity sodium-ion battery anode enabled by a free-standing red phosphorus@N-doped graphene/CNTs aerogel.

Chem Commun (Camb)

School of Materials Science and Engineering, Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, Anhui, China.

Published: June 2022

A novel and facile strategy for fabricating red phosphorus@nitrogen doped graphene/carbon nanotube aerogel (P@NGCA) is proposed as a free-standing anode for high energy sodium-ion batteries. Owing to an optimized structure of red P uniformly confined in porous NGCA with high conductivity and mechanical stability, the free-standing P@NGCA anode exhibits outstanding sodium storage performance with a high areal capacity of 3.3 mA h cm and superior initial Coulombic efficiency of 80%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc02265fDOI Listing

Publication Analysis

Top Keywords

high areal
8
areal capacity
8
high
4
capacity sodium-ion
4
sodium-ion battery
4
battery anode
4
anode enabled
4
enabled free-standing
4
free-standing red
4
red phosphorus@n-doped
4

Similar Publications

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.

View Article and Find Full Text PDF

Unlocking Sulfide Solid-State Battery Longevity by the Paradigm of Dual-Functional Plastic Crystal.

ACS Nano

January 2025

Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China.

The utilization of sulfide-based solid electrolytes represents an attractive avenue for high safety and energy density all-solid-state batteries. However, the potential has been impeded by electrochemical and mechanical stability at the interface of oxide cathodes. Plastic crystals, a class of organic materials exhibiting remarkable elasticity, chemical stability, and ionic conductivity, have previously been underutilized due to their susceptibility to dissolution in liquid electrolytes.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.

View Article and Find Full Text PDF

Inflow-modulated inputs of dissolved organic matter fuel carbon dioxide emissions from a large hyper-eutrophic lake.

Water Res

December 2024

Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.

Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!