Ferrous-based acidogenic fermentation (AF) as a means to treat waste activated sludge (WAS) and produce short-chain fatty acids (SCFAs) has drawn increasing attention, but the massive amount of "iron sludge" that it produces not only significantly increases costs and difficulty of disposal but also poses risks to the environment and human health. This study explored a novel approach to not only reduce the iron dosage required by AF but also to improve its performance by introducing a thiosulfate (TS)-assisted Fe/persulfate (TAFP) pretreatment. Effects of the TAFP pretreatment on WAS disintegration and biodegradability, SCFA production, and microbial community structure with different persulfate-Fe-thiosulfate molar ratios at 4:4:0 (R1), 4:3:1 (R2), 4:2:2 (R3) and 4:1:3 (R4) were investigated. The results showed that the TAFP pretreatment by a remarkable margin promoted the disintegration of WAS as well as the biodegradability of the organics released, owing to the production of robust free radicals (SO• and •OH) triggered by the thiosulfate and Fe cycles. 48-day AF tests further showed maximum SCFA production, ranging roughly between 1283 and 1395 mg COD/L in the TAFP pretreated samples, much higher than Control (<120 mg/L) and R1 (around 593 mg COD/L). At the meantime, the Fe dosage was reduced by 50% in R3 than that of R1. However, a prolonged lag phase of SCFA generation was observed between days 7 and 25, which was ascribable to the acidic conditions (pH < 4.5) closely related to impaired metabolic activities as well as electron transfer efficiencies and limited activities of acidogenic enzymes (i.e., pyruvate-ferredoxin oxidoreductase). Despite such lag phase, the economic and environmental assessment of AF of TAFP-pretreated WAS had a higher net SCFA yield and less "iron sludge" than either without any pretreatment or with Fe/persulfate-only pretreatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135106 | DOI Listing |
Sci Total Environ
May 2023
School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China. Electronic address:
Recently, increasing attention is given on the resource and energy recovery (e.g. short-chain fatty acids (SCFAs) and phosphorus (P)) from waste active sludge (WAS) under the "Dual carbon goals".
View Article and Find Full Text PDFChemosphere
September 2022
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. Electronic address:
Ferrous-based acidogenic fermentation (AF) as a means to treat waste activated sludge (WAS) and produce short-chain fatty acids (SCFAs) has drawn increasing attention, but the massive amount of "iron sludge" that it produces not only significantly increases costs and difficulty of disposal but also poses risks to the environment and human health. This study explored a novel approach to not only reduce the iron dosage required by AF but also to improve its performance by introducing a thiosulfate (TS)-assisted Fe/persulfate (TAFP) pretreatment. Effects of the TAFP pretreatment on WAS disintegration and biodegradability, SCFA production, and microbial community structure with different persulfate-Fe-thiosulfate molar ratios at 4:4:0 (R1), 4:3:1 (R2), 4:2:2 (R3) and 4:1:3 (R4) were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!