Mechanism of in the neuronal Ca overload after intracerebral hemorrhage via the H3K27ac/ axis.

J Neurophysiol

Tianjin Key Labaratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.

Published: July 2022

Intracerebral hemorrhage (ICH) is classified as a subtype of stroke and calcium (Ca) overload is a catalyst for ICH. This study explored the mechanisms of (signal transducer and activator of transcription 1) in the neuronal Ca overload after ICH. ICH mouse models and in vitro cell models were established. Stat1 and transient receptor potential melastatin 7 () were detected upregulated in ICH models. Afterward, the mice were infected with the lentivirus containing sh-Stat1, and HT22 cells were treated with si-Stat1 and the lentivirus containing pcDNA3.1-. The neurological functional impairment, histopathological damage, and Nissl bodies in mice were all measured. HT22 cell viability and apoptosis were identified. The levels of Ca, mRNA, H3K27 acetylation (H3K27ac), CaMKII-α, and p-Stat1 protein in the tissues and cells were determined. We found that silencing Stat1 alleviated ICH damage and repressed the neuronal Ca overload after ICH. H3K27ac enrichment in the promoter region was examined and we found that p-Stat1 accelerated transcription via promoting H3K27ac in the promoter region. Besides, overexpression increased Ca overload and aggravated ICH. Overall, p-Stat1 promoted transcription and further aggravated the Ca overload after ICH. We found Stat1 promotes transcription by promoting H3K27 acetylation and thus promotes calcium overload of neurons after intracerebral hemorrhage.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00083.2022DOI Listing

Publication Analysis

Top Keywords

neuronal overload
12
intracerebral hemorrhage
12
overload ich
12
ich
9
calcium overload
8
h3k27 acetylation
8
promoter region
8
transcription promoting
8
overload
7
mechanism neuronal
4

Similar Publications

RhFGF21 protected PC12 cells against mitochondrial apoptosis triggered by HO via the AKT-mediated ROS signaling pathway.

Exp Cell Res

January 2025

Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:

Article Synopsis
  • Oxidative stress is a key factor in neurodegenerative diseases by damaging neurons, making the reduction of reactive oxygen species (ROS) a potential treatment approach.
  • Fibroblast growth factor 21 (FGF21) has shown protective effects on neuronal cells, as it can enhance cell viability by reducing mitochondrial apoptosis and lowering ROS levels.
  • The research indicates that treatment with rhFGF21 increases the expression of p-AKT, which plays a critical role in mediating cell survival against oxidative stress, suggesting that FGF21's protective effects are linked to the AKT and ROS signaling pathway.
View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Brainstem C1 neurons mediate heart failure decompensation and mortality during acute salt loading.

Cardiovasc Res

December 2024

Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago 8331150, Chile.

Aims: Heart failure (HF) is an emerging epidemic worldwide. Despite advances in treatment, the morbidity and mortality rate of HF remain high, and the global prevalence continues to rise. Common clinical features of HF include cardiac sympathoexcitation, disordered breathing, and kidney dysfunction; kidney dysfunction strongly contributes to sodium retention and fluid overload, leading to poor outcomes of HF patients.

View Article and Find Full Text PDF

Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis.

Neurotox Res

January 2025

Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.

Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand.

View Article and Find Full Text PDF

(1) Background: Impeded resolution of inflammation contributes substantially to the pathogenesis of Alzheimer's disease (AD); consequently, resolving inflammation is pivotal to the amelioration of AD pathology. This can potentially be achieved by the treatment with specialized pro-resolving lipid mediators (SPMs), which should resolve neuroinflammation in brains. (2) Methods: Here, we report the histological effects of long-term treatment with an SPM, maresin-like 1 (MarL1), on AD pathogenesis in a transgenic 5xFAD mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!