Introducing magnetic switchability into artificial molecular machines is fascinating for precise control of magnetism via external stimuli. Herein, a field-induced Co single-molecule magnet was found to exhibit the reversible switch of Jahn-Teller distortion near room temperature, along with thermal conformational motion of the 18-crown-6 rotor, which pulls the coordinated H O to rotate through intermolecular hydrogen bonds and triggers a single-crystal-to-single-crystal phase transition with T =282 K and T =276 K. Interestingly, the molecular magnetic anisotropy probed by single-crystal angular-resolved magnetometry revealed the reorientation of easy axis by 14.6°. Moreover, ON/OFF negative magnetodielectric effects were respectively observed in the high-/low-temperature phase, which manifests the spin-lattice interaction in the high-temperature phase could be stronger, in accompanied by the hydrogen bonding between the rotating 18-crown-6 and the coordinated H O.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202204700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!