Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253735PMC
http://dx.doi.org/10.15252/embr.202254755DOI Listing

Publication Analysis

Top Keywords

malaria parasites
8
small evs
8
large evs
8
early endosome
8
evs
7
subpopulations
5
parasites release
4
release vesicle
4
vesicle subpopulations
4
subpopulations signatures
4

Similar Publications

Background: Malaria is a disease deeply rooted in poverty. Malaria in pregnant women leads to severe complications, including low birth weight and neonatal mortality, which can adversely affect both mother and child. This study aimed to identify the factors associated with malaria in pregnancy among women attending antenatal care (ANC) clinics in three districts of the Ashanti Region, Ghana.

View Article and Find Full Text PDF

mosGILT antibodies interfere with Plasmodium sporogony in Anopheles gambiae.

Nat Commun

January 2025

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.

Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT.

View Article and Find Full Text PDF

Low prevalence of copy number variation in pfmdr1 and pfpm2 in Plasmodium falciparum isolates from southern Angola.

Malar J

January 2025

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.

Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.

View Article and Find Full Text PDF

Background: In Myanmar, progress towards malaria elimination has stagnated in some areas requiring deployment of new tools and approaches to accelerate malaria elimination. While there is evidence that networks of community-based malaria workers and insecticide-treated nets (ITNs) can reduce malaria transmission in a variety of settings, evidence for the effectiveness of other interventions, such as topical repellents, is limited. Since malaria transmission in Myanmar occurs outdoors, mainly among forest-goers, this study tested the effectiveness of topical repellents in combination with supplemental ITN distribution and strengthened networks of malaria workers.

View Article and Find Full Text PDF

Background: Mosquitoes are important drivers of infectious diseases transmission, with Anopheles mosquitoes being responsible of malaria transmission. In Cambodia, where malaria is prevalent in forested regions, understanding the ecology of these vectors is crucial. This study aimed to investigate the abundance, distribution, seasonal patterns, biting behaviour of Anopheles mosquitoes, and prevalence of Plasmodium, in Mondulkiri province, Northeastern Cambodia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!