A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed coexisting. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, where biotic interactions might be required to make the most of an extreme environment. We studied a high-throughput gene data set of alpine lakes (>220 Pyrenean lakes) with cooccurrence network analysis to infer potential biotic interactions, using the combination of a probabilistic method for determining significant cooccurrences and coexclusions between pairs of species and a conceptual framework for classifying the nature of the observed cooccurrences and coexclusions. This computational approach (i) determined and quantified the importance of environmental variables and spatial distribution and (ii) defined potential interacting microbial assemblages. We determined the properties and relationships between these assemblages by examining node properties at the taxonomic level, indicating associations with their potential habitat sources (i.e., aquatic versus terrestrial) and their functional strategies (i.e., parasitic versus mixotrophic). Environmental variables explained fewer pairs in bacteria than in microbial eukaryotes for the alpine data set, with pH alone explaining the highest proportion of bacterial pairs. Nutrient composition was also relevant for explaining association pairs, particularly in microeukaryotes. We identified a reduced subset of pairs with the highest probability of species interactions ("interacting guilds") that significantly reached higher occupancies and lower mean relative abundances in agreement with the carrying capacity hypothesis. The interacting bacterial guilds could be more related to habitat and microdispersal processes (i.e., aquatic versus soil microbes), whereas for microeukaryotes trophic roles (osmotrophs, mixotrophs, and parasitics) could potentially play a major role. Overall, our approach may add helpful information to guide further efforts for a mechanistic understanding of microbial interactions . A fundamental question in biology is why some species tend to occur together in the same locations, while others are never observed to coexist. This question becomes particularly relevant for microorganisms thriving in the highly diluted waters of high mountain lakes, in which biotic interactions might be required to make the most of an extreme environment. Microbial metacommunities are too often only studied in terms of their environmental niches and geographic barriers since they show inherent difficulties to quantify biological interactions and their role as drivers of ecosystem functioning. Our study highlights that telling apart potential interactions from both environmental and geographic niches may help for the initial characterization of organisms with similar ecologies in a large scope of ecosystems, even when information about actual interactions is partial and limited. The multilayered statistical approach carried out here offers the possibility of going beyond taxonomy to understand microbiological behavior .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241510PMC
http://dx.doi.org/10.1128/msphere.00918-21DOI Listing

Publication Analysis

Top Keywords

high mountain
12
biotic interactions
12
interactions
9
microbial interactions
8
fundamental question
8
question biology
8
biology species
8
species tend
8
tend occur
8
occur locations
8

Similar Publications

We hypothesized that bighorn sheep ewes with chronic nasal carriage are the source of infection that results in fatal lamb pneumonia. We tested this hypothesis in captive bighorn ewes at two study facilities over a 5-year period, by identifying carrier ewes and then comparing lamb fates in groups that did (exposed pens) or did not (non-exposed pens) include one or more carrier ewes. Most (23 of 30) lambs born in exposed pens, but none of 11 lambs born in non-exposed pens, contracted fatal pneumonia.

View Article and Find Full Text PDF

Effective, practical options for managing disease in wildlife populations are limited, especially after diseases become established. Removal strategies (e.g.

View Article and Find Full Text PDF

Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.

View Article and Find Full Text PDF

To find out whether dietary amylose/ amylopectin ratio (DAR) could attenuate injury in lipopolysaccharide (LPS)-challenged piglets, sixty male weaned piglets (Duroc × Landrace × Yorkshire, 21 days old, 6.51 ± 0.64 kg) were allotted to 5 dietary treatments with 12 cages per treatment, and fed ad libitum with diets different in DAR (0.

View Article and Find Full Text PDF

Land use and landscape pattern changes in the Fenhe River Basin, China.

Sci Rep

January 2025

School of Physical Education, Shanxi University, Taiyuan, 030006, China.

The composition and pattern of ecosystems play a crucial role in determining the overall condition and spatial variations of ecosystem services. In this study, we explored the Normalized Difference Vegetation Index (NDVI), six land use/land cover change (LULC) types, and their landscape patterns to reflect spatial-temporal dynamics from 2010 to 2020 in the upper and middle reaches of the Fenhe River Basin. The trend analysis of Mann-Kendall tests was used to assess the NDVI variation of each pixel over the past decade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!