Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71.

mSphere

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom.

Published: June 2022

Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241546PMC
http://dx.doi.org/10.1128/msphere.00088-22DOI Listing

Publication Analysis

Top Keywords

eva71
9
enzyme-linked immunosorbent
8
immunosorbent assay
8
detection native
8
native conformation
8
enterovirus a71
8
eva71 medically
8
medically virus
8
virus commonly
8
commonly associated
8

Similar Publications

Enterovirus A71 (EV-A71) has caused hand, foot, and mouth disease with an increased prevalence of neurological complications and acute mortality, threatening young children around the globe. By provoking mucosal immunity, intranasal vaccination has been suggested to prevent EV-A71 infection. However, antigens delivered via the nasal route usually fail to induce a protective memory response.

View Article and Find Full Text PDF

Beyond Poliomyelitis: A 21-Year Study of Non-Polio Enterovirus Genotyping and Its Relevance in Acute Flaccid Paralysis in São Paulo, Brazil.

Viruses

December 2024

Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica "Prof. Alexandre Vranjac", Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil.

In the context of the near-global eradication of wild poliovirus, the significance of non-polio enteroviruses (NPEVs) in causing acute flaccid paralysis (AFP) and their impact on public health has gained increased attention. This research, conducted from 2001 to 2021, examined stool samples from 1597 children under 15 years in São Paulo, Brazil, through the AFP/Poliomyelitis Surveillance Program, detecting NPEVs in 6.9% of cases.

View Article and Find Full Text PDF

Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.

Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).

View Article and Find Full Text PDF

Enterovirus (EV) is a genus that includes a large diversity of viruses spread around the world. They are the main cause of numerous diseases with seasonal clusters, like hand-foot-mouth disease (HFMD). A vaccine is marketed in China for the prevention of HFMD caused by EV-A71.

View Article and Find Full Text PDF

Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as model and demonstrated that unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!