The present study aimed to investigate the enzymetic, non-enzymetic toxicity and antioxidant potential of a drug candidate 5-Benzyl-1,3,4-Oxadiazole-2-Thiol(OXPA) using computational tools and in vivo models. The binding pattern of it, with different toxicity/oxidative enzymes was predicted using software pkCSM, Protox- II, LAZAR, Mcule 1-Click Docking 3D-Ligand binding Site and best score obtained used as an evaluating criterion. After acute oral toxicity, in vivo. antioxidant and hepato protective activity was investigated on male wistar rats, segregated into four groups as control (NS), toxic (INH-RIF), standard (Silymerin) and sample (OXPA, 100mg/Kg) for 21days. Level of antioxidant enzymes / histopathology and serum biochemical parameters in liver and blood of treated rats was assessed by using scientific tools. In silico study reveal no profound toxicity parameters however, LD50 found to be 560mg/Kg while in vivo study declared it safe till 1000mg/Kg, as having no toxicity symptoms. Molecular interaction score with GTH reductase, s-transferase and significant in vivo antioxidant effect on catalase, SOD, TBARS enzymes and histopathological assessment, declare OXPA a good antioxidant having significant (P< 0.05) hepato protective activity. Results of in silico, in vivo studies declare the propensity of 5-Benzyl-1, 3, 4-oxadiazole-2-thiol as potential antioxidant, for further investigations as a drug.
Download full-text PDF |
Source |
---|
Biochem J
January 2025
Universiteit Gent, Ghent, Belgium.
Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acids pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in biofortification strategies and similar efforts targeting thiamin led to a 3-4-fold increase in white rice.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Centre for Applied Pharmacokinetic Research, University of Manchester, UK.
Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Nat Microbiol
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:
Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!