Background: CD300s are a group of proteins playing vital roles in immune responses. However, much is yet to be elucidated regarding the expression patterns and clinical significances of CD300s in cancers.
Methods: In this study, we comprehensively investigated CD300s in a pan-cancer manner using multi-omic data from The Cancer Genome Atlas. We also studied the relationship between CD300s and the immune landscape of AML.
Results: We found that CD300A-CD300LF were generally overexpressed in tumors (especially AML), whereas CD300LG was more often downregulated. In AML, transactivation of CD300A was not mediated by genetic alterations but by histone modification. Survival analyses revealed that high CD300A-CD300LF expression predicted poor outcome in AML patients; the prognostic value of CD300A was validated in seven independent datasets and a meta dataset including 1115 AML patients. Furthermore, we demonstrated that CD300A expression could add prognostic value in refining existing risk models in AML. Importantly, CD300A-CD300LF expression was closely associated with T-cell dysfunction score and could predict response to AML immunotherapy. Also, CD300A was found to be positively associated with HLA genes and critical immune checkpoints in AML, such as VISTA, CD86, CD200R1, Tim-3, and the LILRB family genes.
Conclusions: Our study demonstrated CD300s as potential prognostic biomarker and an ideal immunotherapy target in AML, which warrants future functional and clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844665 | PMC |
http://dx.doi.org/10.1002/cam4.4905 | DOI Listing |
Pediatr Med
February 2021
Division of Pediatric Oncology and Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Background And Objective: Unlike the majority of pediatric leukemia patients, young patients with acute myeloid leukemia (AML) have not seen significant improvement in treatment outcomes. This is frequently attributed to the heterogeneity of this malignancy in terms of its mutations and molecularly defined categories. In adult versus pediatric cases of AML, the heterogeneity is preserved, although there are key differences in the incidence of gene mutations, chromosomal translocations, and other molecular features.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Introduction: DNA methylation inhibitors have been approved for the prevention of Acute Myeloid Leukemia (AML), and their safety profile is not fully characterized. This study was aimed at evaluating the adverse drug reactions (ADRs) of DNA methylation inhibitors by analyzing the individual case safety reports (ICSRs) collected in the EudraVigilance (EV) database.
Materials And Methods: The EV database managed by the European Medicines Agency was adopted.
Front Cell Dev Biol
January 2025
Department of Hematology, Jiangdu People's Hospital, Yangzhou, China.
Introduction: Acute myeloid leukemia (AML), a highly heterogeneous hematological malignancy, remains a major challenge in adult oncology. Stem cell research has highlighted the crucial role of long noncoding RNA (lncRNA) in regulating cellular differentiation and self-renewal processes, which are pivotal in AML pathogenesis and therapy resistance.
Methods: This study explores the relationship between cuproptosis-related lncRNAs and AML prognosis, providing novel insights into their impact on hematopoietic stem and progenitor cells.
Eur J Haematol
January 2025
Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada.
Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!