A Novel Ag -DNA Rod Comprising a One-Dimensional Array of 11 Silver Ions within a Double Helical Structure.

Angew Chem Int Ed Engl

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan.

Published: August 2022

DNA/RNA duplexes containing metal-ion-mediated base pairs (metallo-base pairs) have potential applications in developing nucleic acid-based nanodevices and genetic code expansion. Many metallo-base pairs are formed within duplexes stabilized by Watson-Crick base pairs. Recently, the crystal structure of an Ag -DNA nanowire with an uninterrupted one-dimensional silver array was determined. Here, we present a new DNA helical wire, the "Ag -DNA rod", containing an uninterrupted array of 11 Ag ions. The Ag -DNA rod consisted of only C-Ag -C, G-Ag -G, G-Ag -5-bromouracil ( U), and U-Ag - U metallo base pairs, with no Watson-Crick pairs. The Ag -DNA rods were connected by non-canonical G-G pairs in crystals. Notably, data from our absorbance, circular dichroism, nuclear magnetic resonance, and mass spectrometry analyses suggested that the Ag -DNA rods formed in solution, as well as within crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202204798DOI Listing

Publication Analysis

Top Keywords

base pairs
12
-dna rod
8
metallo-base pairs
8
-dna rods
8
pairs
7
-dna
5
novel -dna
4
rod comprising
4
comprising one-dimensional
4
one-dimensional array
4

Similar Publications

Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China.

View Article and Find Full Text PDF

Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis.

View Article and Find Full Text PDF

sp. nov. isolated from flowers of winter savoury L.

Int J Syst Evol Microbiol

January 2025

Laboratorio de Bacterias Lcticas y Probiticos, Instituto de Agroqumica y Tecnologa de Alimentos (IATA-CSIC), Av. Agustn Escardino 7, 46980 Paterna, Spain.

A novel strain of the genus , named He02, was isolated from flowers of L. in a survey for lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia, Spain. Partial 16S rRNA gene sequencing revealed a similarity of 99% to DSM 23037=Ryu1-2.

View Article and Find Full Text PDF

Dimerizing DNA-AgNCs a C-Ag-C structure for fluorescence sensing with dual-output signals.

Chem Commun (Camb)

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.

View Article and Find Full Text PDF

The topography of nullomer-emerging mutations and their relevance to human disease.

Comput Struct Biotechnol J

December 2024

Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

Nullomers are short DNA sequences (11-18 base pairs) that are absent from a genome; however, they can emerge due to mutations. Here, we characterize all possible putative human nullomer-emerging single base pair mutations, population variants and disease-causing mutations. We find that the primary determinants of nullomer emergence in the human genome are the presence of CpG dinucleotides and methylated cytosines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!