A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptomic analysis reveals mode of action of butyric acid supplementation in an intensified CHO cell fed-batch process. | LitMetric

Process intensification is increasingly used in the mammalian biomanufacturing industry. The key driver of this trend is the need for more efficient and flexible production strategies to cope with the increased demand for biotherapeutics predicted in the next years. Therefore, such intensified production strategies should be designed, established, and characterized. We established a CHO cell process consisting of an intensified fed-batch (iFB), which is inoculated by an N-1 perfusion process that reaches high cell concentrations (100 × 10  c ml ). We investigated the impact of butyric acid (BA) supplementation in this iFB process. Most prominently, higher cellular productivities of more than 33% were achieved, thus 3.5 g L of immunoglobulin G (IgG) was produced in 6.5 days. Impacts on critical product quality attributes were small. To understand the biological mechanisms of BA in the iFB process, we performed a detailed transcriptomic analysis. Affected gene sets reflected concurrent inhibition of cell proliferation and impact on histone modification. These translate into subsequently enhanced mechanisms of protein biosynthesis: enriched regulation of transcription, messenger RNA processing and transport, ribosomal translation, and cellular trafficking of IgG intermediates. Furthermore, we identified mutual tackling points for optimization by gene engineering. The presented strategy can contribute to meet future requirements in the continuously demanding field of biotherapeutics production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9545226PMC
http://dx.doi.org/10.1002/bit.28150DOI Listing

Publication Analysis

Top Keywords

transcriptomic analysis
8
butyric acid
8
acid supplementation
8
cho cell
8
production strategies
8
ifb process
8
process
6
analysis reveals
4
reveals mode
4
mode action
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!