The main physiological challenge in high altitude environment is hypoxia which affects the aerobic metabolism reducing the energy supply. These changes may further progress toward extreme environment-related diseases. These are further reflected in changes in small molecular weight metabolites and metabolic pathways. In the present study, metabolic changes due to chronic environmental hypoxia were assessed using 1H NMR metabolomics by analysing the urinary metabolic profile of 70 people at sea level and 40 people at Siachen camp (3700 m) for 1 year. Multivariate statistical analysis was carried out, and PLSDA detected 15 metabolites based on VIP score > 1. ROC analysis detected cis-aconitate, Nicotinamide Mononucleotide, Tyrosine, Choline and Creatinine metabolites with a high range of sensitivity and specificity. Pathway analysis revealed 16 pathways impact > 0.05, and phenylalanine tyrosine and tryptophan biosynthesis was the most prominent altered pathway indicating metabolic remodelling to meet the energy requirements. TCA cycle, Glycine serine and Threonine metabolism, Glutathione metabolism and Cysteine alterations were other metabolic pathways affected during long-term high-altitude hypoxia exposure. Present findings will help unlock a new dimension for the potential application of NMR metabolomics to address extreme environment-related health problems, early detection and developing strategies to combat high altitude hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156790PMC
http://dx.doi.org/10.1038/s41598-022-13031-5DOI Listing

Publication Analysis

Top Keywords

nmr metabolomics
12
urinary metabolic
8
high altitude
8
extreme environment-related
8
metabolic pathways
8
metabolic
5
metabolic modulation
4
modulation human
4
human participants
4
participants residing
4

Similar Publications

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Ganoderma lucidum is a traditional Chinese medicine used to treat Alzheimer's disease (AD), whose main active ingredient is polysaccharides. A heteropolysaccharide named GLPZ-1 was isolated from Ganoderma lucidum. GLPZ-1 (6.

View Article and Find Full Text PDF

Synthesis of harmaline N-9 derivatives and investigation of in vitro anticancer activity.

Bioorg Med Chem Lett

January 2025

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488 China. Electronic address:

Harmaline as a natural compound possessed a wide range of pharmacological activities. In this study, 22 novel harmaline-based derivatives were synthesized and screened for in vitro anti-proliferation activity against three cancer cell lines, HCT116, MCF7, and MGC803. The modification site was at the position N-9 of harmaline.

View Article and Find Full Text PDF

Two-Phase Extraction for Comprehensive Analysis of the Plant Metabolome by NMR.

Methods Mol Biol

January 2025

Grupo Metabolômica, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.

Metabolomics is the area of research, which strives to obtain complete metabolic fingerprints, to detect differences between them and to provide hypothesis to explain those differences (Schripsema J, Dagnino D, Handbook of chemical and biological plant analytical methods. Wiley, New York, 2015). However, obtaining complete metabolic fingerprints is not an easy task.

View Article and Find Full Text PDF

Rat Fecal Metabolomics-Based Analysis.

Methods Mol Biol

January 2025

Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.

The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!