A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semiconducting hematite facilitates microbial and abiotic reduction of chromium. | LitMetric

Semiconducting hematite facilitates microbial and abiotic reduction of chromium.

Sci Rep

Parsons Laboratory, Department of Civil and Environmental Engineering, MIT, 15 Vassar St., Cambridge, MA, 02139, USA.

Published: May 2022

Semi-conducting Fe oxide minerals, such as hematite, are well known to influence the fate of contaminants and nutrients in many environmental settings through sorption and release of Fe(II) resulting from microbial or abiotic reduction. Studies of Fe oxide reduction by adsorbed Fe(II) have demonstrated that reduction of Fe(III) at one mineral surface can result in the release of Fe(II) on a different one. This process is termed "Fe(II) catalyzed recrystallization" and is believed to be the result of electron transfer through semi-conducting Fe (hydr)oxides. While it is well understood that Fe(II) plays a central role in redox cycling of elements, the environmental implications of Fe(II) catalyzed recrystallization require further exploration. Here, we demonstrate that hematite links physically separated redox reactions by conducting the electrons involved in those reactions. This is shown using an electrochemical setup where Cr reduction is coupled with a potentiostat or Shewanella putrefaciens, a metal reducing microbe, where electrons donated to hematite produce Fe(II) that ultimately reduces Cr. This work demonstrates that mineral semi-conductivity may provide an additional avenue for redox chemistry to occur in natural soils and sediments, because these minerals can link redox active reactants that could not otherwise react due to physical separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156696PMC
http://dx.doi.org/10.1038/s41598-022-12824-yDOI Listing

Publication Analysis

Top Keywords

microbial abiotic
8
abiotic reduction
8
release feii
8
feii
6
reduction
5
semiconducting hematite
4
hematite facilitates
4
facilitates microbial
4
reduction chromium
4
chromium semi-conducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!