Objective: To evaluate the effectiveness of heterologous and homologous covid-19 vaccine regimens with and without boosting in preventing covid-19 related infection, hospital admission, and death.

Design: Living systematic review and network meta-analysis.

Data Sources: World Health Organization covid-19 databases, including 38 sources of published studies and preprints.

Study Selection: Randomised controlled trials, cohort studies, and case-control studies.

Methods: 38 WHO covid-19 databases were searched on a weekly basis from 8 March 2022 to 31 July 2022. Studies that assessed the effectiveness of heterologous and homologous covid-19 vaccine regimens with or without a booster were identified. Studies were eligible when they reported the number of documented, symptomatic, severe covid-19 infections, covid-19 related hospital admissions, or covid-19 related deaths among populations that were vaccinated and unvaccinated. The primary measure was vaccine effectiveness calculated as 1−odds ratio. Secondary measures were surface under the cumulative ranking curve (SUCRA) scores and the relative effects for pairwise comparisons. The risk of bias was evaluated by using the risk of bias in non-randomised studies of interventions (ROBINS-I) tool for all cohort and case-control studies. The Cochrane risk of bias tool (version 2; ROB-2) was used to assess randomised controlled trials.

Results: The second iteration of the analysis comprised 63 studies. 25 combinations of covid-19 vaccine regimens were identified, of which three doses of mRNA vaccine were found to be 93% (95% credible interval 70% to 98%) effective against asymptomatic or symptomatic covid-19 infections for non-delta or non-omicron related infections. Heterologous boosting using two dose adenovirus vector vaccines with one dose mRNA vaccine showed a vaccine effectiveness of 94% (72% to 99%) against non-delta or non-omicron related asymptomatic or symptomatic infections. Three doses of mRNA vaccine were found to be the most effective in reducing non-delta or non-omicron related hospital admission (96%, 82% to 99%). The vaccine effectiveness against death in people who received three doses of mRNA vaccine remains uncertain owing to confounders. The estimate for a four dose mRNA vaccine regimen was of low certainty, as only one study on the effectiveness of four doses could be included in this update. More evidence on four dose regimens will be needed to accurately assess the effectiveness of a fourth vaccine dose. For people with delta or omicron related infection, a two dose regimen of an adenovirus vector vaccine with one dose of mRNA booster was 77% (42% to 91%) effective against asymptomatic or symptomatic covid-19 infections, and a three dose regimen of a mRNA vaccine was 93% (76% to 98%) effective against covid-19 related hospital admission.

Conclusion: An mRNA booster is recommended to supplement any primary vaccine course. Heterologous and homologous three dose regimens work comparably well in preventing covid-19 infections, even against different variants. The effectiveness of three dose vaccine regimens against covid-19 related death remains uncertain.

Systematic Review Registration: This review was not registered. The protocol is included in the supplementary document.

Readers' Note: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 1 of the original article published on 31 May 2022 (BMJ 2022;377:e069989), and previous versions can be found as data supplements (https://www.bmj.com/content/377/bmj-2022-069989/related). When citing this paper please consider adding the version number and date of access for clarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724446PMC
http://dx.doi.org/10.1136/bmj-2022-069989DOI Listing

Publication Analysis

Top Keywords

mrna vaccine
24
vaccine regimens
20
vaccine
17
heterologous homologous
16
covid-19 vaccine
16
covid-19 infections
16
covid-19
15
effectiveness heterologous
12
homologous covid-19
12
living systematic
12

Similar Publications

The emergence of new variants and diverse vaccination regimens have raised uncertainty about vaccine effectiveness against SARS-CoV-2. This study aims to investigate the impact of Omicron primo-/reinfection and primary vaccination schedules on the immunogenicity of an mRNA-based booster dose over a six-month period. We conducted a prospective cohort study to assess the durability and level of antibodies of 678 healthcare workers fully vaccinated against COVID-19.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Leveraging Next-Generation Sequencing Application from Identity to Purity Profiling of Nucleic Acid-Based Products.

Pharmaceutics

December 2024

Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India.

: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety.

View Article and Find Full Text PDF

Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review.

Pathogens

January 2025

Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.

Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.

View Article and Find Full Text PDF

Vaccination of COVID-19-convalescent individuals may generate 'hybrid' immunity of enhanced magnitude, durability, and cross-reactive breadth. Our primary goal was to characterize hybrid antibody (Ab) responses in a patient cohort infected with ancestral Wuhan-Hu-1 virus and vaccinated between 6 and 10 months later with the Wuhan-Hu-1-based BNT162b2 mRNA vaccine. We were particularly interested in determining the efficacy of neutralizing Ab responses against subsequently emergent SARS-CoV-2 variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!