Anthropic activities such as open pit mining, amplify the natural erosion of metals contained in the soils, particularly in New Caledonia, leading to atmospheric emission of nickel oxide nanoparticles (NiONPs). These particles are produced during extraction end up in aquatic ecosystems through deposition or leaching in the rivers. Despite alarming freshwater Ni concentrations, only few studies have focused on the cellular and molecular mechanisms of NiONPs toxicity on aquatic organisms and particularly on eels. Those fish are known to be sensitive to metal contamination, especially their liver, which is a key organ for lipid metabolism, detoxification and reproduction. The objective of this study was to assess in vitro the cytotoxic effects of NiONPs on Anguilla japonica hepatocytes, HEPA-E1. HEPA-E1 were exposed to NiONPs (0.5-5 μg/cm) for 4 or 24 h. Several endpoints were studied: (i) viability, (ii) ROS production, SOD activity and selected anti-oxidant genes expression, (iii) inflammation, (iv) calcium signalling, (v) mitochondrial function and (vi) apoptosis. The results evidenced that NiONPs induce a decrease of cell viability and an increase in oxidative stress with a significant superoxide anion production. An increase of mitochondrial calcium concentration and a decrease of mitochondrial membrane potential were observed, leading to apoptosis. These results underline the potential toxic impact of NiONPs on eels living in mining areas. Therefore, eel exposure to NiONPs can affect their migration and reproduction in New Caledonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135158DOI Listing

Publication Analysis

Top Keywords

cellular molecular
8
molecular mechanisms
8
nionps
8
mechanisms nionps
8
nionps toxicity
8
hepatocytes hepa-e1
8
toxicity eel
4
eel hepatocytes
4
hepa-e1 illustration
4
illustration impact
4

Similar Publications

Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.

View Article and Find Full Text PDF

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Background Aims: Bulevirtide (BLV) is a novel and the only approved treatment option for patients with chronic hepatitis D (CHD). BLV alleviates liver inflammation already early during treatment when only minor HDV RNA changes are observed. We hypothesized that BLV-treatment may influence immune cells in CHD patients and performed a high-resolution analysis of natural killer (NK) cells before and during BLV-therapy.

View Article and Find Full Text PDF

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!