Background: State-of-the-art automatic atrial fibrillation (AF) detection models trained on RR-interval (RRI) features generally produce high performance on standard benchmark electrocardiogram (ECG) AF datasets. These models, however, result in a significantly high false positive rates (FPRs) when applied on ECG data collected under free-living ambulatory conditions and in the presence of non-AF arrhythmias.
Method: This paper proposes DeepAware, a novel hybrid model combining deep learning (DL) and context-aware heuristics (CAH), which reduces the FPR effectively and improves the AF detection performance on participant-operated ambulatory ECG from free-living conditions. It exploits the RRI and P-wave features, as well as the contextual features from the ambulatory ECG.
Results: DeepAware is shown to be very generalizable and superior to the state-of-the-art models when applied on unseen benchmark ECG AF datasets. Most importantly, the model is able to detect AF efficiently when applied on participant-operated ambulatory ECG recordings from free-living conditions and has achieved a sensitivity (Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%, 98.06%, respectively. Results also demonstrate the effect of atrial activity analysis (via P-waves detection) and CAH in reducing the FPR over the RRI features-based AF detection model.
Conclusions: The proposed DeepAware model can substantially reduce the physician's workload of manually reviewing the false positives (FPs) and facilitate long-term ambulatory monitoring for early detection of AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2022.106899 | DOI Listing |
J Cheminform
January 2025
Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Bangkok Hospital Dental Center Holistic Care and Dental Implant, Bangkok Hospital, Bangkok, 10310, Thailand.
Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.
BMC Med Res Methodol
January 2025
Leeds Institute of Clinical Trials Research, University of Leeds, Clarendon Way, Leeds, LS2 9NL, UK.
Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients, but there remains room for improvement. In the current study, we developed a deep learning model based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients. The efficiency of the model was then evaluated in independent multicenter cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!