Selective transportation and energy homeostasis regulation of dietary advanced glycation end-products in human intestinal Caco-2 cells.

Food Chem

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China. Electronic address:

Published: October 2022

Advanced glycation end-products (AGEs) are a chemically heterogeneous set of modifications widely found in processed foods. Due to uncertain bioavailability, dietary AGEs regulate energy homeostasis through mechanisms that largely remain unclear. In this study, selective transmembrane transport of AGEs with different modification types from glycated β-casein digest were identified and compared. The results showed that only a few types of free and peptide-bound AGEs can easily cross the Caco-2 monolayers and thus exert their effects. A combination of biochemical assays, mitochondrial analyses, and comparative experiments identified that the effect of AGEs on cellular energy homeostasis comes mainly from their free fractions. Mechanistically, free AGEs arrest the mitochondrial differentiation and mtDNA repair by intervening in the function of thymidine phosphorylase, and interfering with mitochondrial energy production by inhibiting the activation of AMPK-SIRT6 signaling pathway. These results demonstrate mechanisms by which processed foods cause mitochondrial dysfunction and lead to dysfunctional energy homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133284DOI Listing

Publication Analysis

Top Keywords

energy homeostasis
16
advanced glycation
8
glycation end-products
8
processed foods
8
ages
6
energy
5
selective transportation
4
transportation energy
4
homeostasis
4
homeostasis regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!