A novel series of teriflunomide derivatives as orally active inhibitors of human dihydroorotate dehydrogenase for the treatment of colorectal carcinoma.

Eur J Med Chem

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. Electronic address:

Published: August 2022

Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme in the de novo synthesis pathway of pyrimidine nucleotide in cells. The moderate efficiency of teriflunomide, an approved hDHODH inhibitor for the treatment of multiple sclerosis, limited its therapeutic application of malignancy. Herein, thirty-seven novel teriflunomide derivatives with a biphenyl scaffold were designed, synthesized and evaluated. As a result, the optimal compound A37 exhibited a potent hDHODH inhibitory activity with an IC value of 10.2 nM, which was about 40-fold stronger than that of teriflunomide (IC = 407.8 nM), and showed favorable antiproliferative activities against HCT116 cells with an IC value of 0.3 μM. Meanwhile, A37 displayed an acceptable safety profile at an oral dosage of 400 mg/kg in the acute toxicity assay, and exhibited a promising antitumor effect with tumor growth inhibition rate of 54.4% at an oral dosage of 30 mg/kg in HCT116 xenograft model. These results indicate that A37 is an efficacious hDHODH inhibitor with potential in the treatment of colorectal carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114489DOI Listing

Publication Analysis

Top Keywords

teriflunomide derivatives
8
human dihydroorotate
8
dihydroorotate dehydrogenase
8
treatment colorectal
8
colorectal carcinoma
8
hdhodh inhibitor
8
oral dosage
8
novel series
4
teriflunomide
4
series teriflunomide
4

Similar Publications

Cost-consequence analysis of early vs. delayed natalizumab use in highly active relapsing-remitting multiple sclerosis: a simulation study.

J Neurol

January 2025

Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.

Background: Natalizumab (NAT) is an established disease-modifying therapy (DMT) for highly active multiple sclerosis (MS). However, its use involves complex decision-making, often leading to initial use of lower efficacy therapies. Recently, the first biosimilar NAT was approved, enabling competitive pricing.

View Article and Find Full Text PDF

Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine.

Antiviral Res

January 2025

Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany. Electronic address:

Article Synopsis
  • - RNA viruses like influenza and coronaviruses pose significant health threats, often lacking effective vaccines or treatments, while others like filo- and henipaviruses have high mortality rates despite limited outbreaks.
  • - The antiviral drug 4'-Fluorouridine (4'-FlU) inhibits RNA virus replication by targeting the RNA-dependent RNA polymerase, but its effectiveness varies across different viruses, necessitating strategies to improve its potency.
  • - Researchers found that inhibiting dihydroorotate dehydrogenase (DHODH) enhances the antiviral effects of 4'-FlU against several RNA viruses, including in models of infection, potentially by depleting uridine, which boosts 4'-FlU's incorporation into viral
View Article and Find Full Text PDF

Background: Two-stage models of heterogenous treatment effects (HTE) may advance personalized medicine in multiple sclerosis (MS). Brain atrophy is a relatively objective outcome measure that has strong relationships to MS prognosis and treatment effects and is enabled by standardized MRI.

Objectives: To predict brain atrophy outcomes for patients initiating disease-modifying therapies (DMT) with different efficacies, considering the patients' baseline brain atrophy risk measured via brain parenchymal fraction (BPF).

View Article and Find Full Text PDF

Background And Objectives: Teriflunomide is a disease-modifying therapy (DMT) for multiple sclerosis (MS). This post authorisation safety study assessed risks of adverse events of special interest (AESI) associated with teriflunomide use.

Methods: Secondary use of individual data from the Danish MS Registry (DMSR), the French National Health Data System (SNDS), the Belgian national database of health care claims (AIM-IMA) and the Belgian Treatments in MS Registry (Beltrims).

View Article and Find Full Text PDF

Up to 10 years ago the most common approach to the treatment of pediatric MS (ped-MS) was to start with IFNB or GA (so-called first-line therapies or moderate-efficacy disease-modifying therapies [ME-DMTs]) and to switch to more aggressive treatments (or high-efficacy disease-modifying therapies [HE-DMTs]) in non-responder patients. The use of HE-DMTs as first choice was recommended in selected cases with an active, aggressive form of MS. Indications for the treatment of ped-MS were essentially derived from data of observational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!