Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN.

Nano Lett

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.

Published: June 2022

Plasmonic transdimensional materials (TDMs), which are atomically thin metals of precisely controlled thickness, are expected to exhibit large tailorability and dynamic tunability of their optical response as well as strong light confinement and nonlocal effects. Using spectroscopic ellipsometry, we characterize the complex permittivity of ultrathin films of passivated plasmonic titanium nitride with thicknesses ranging from 1 to 10 nm. By measuring passivated TiN, we experimentally distinguish between the contributions of an oxide layer and thickness to the optical properties. A decrease in the Drude plasma frequency and increase in the damping in thinner films is observed due to spatial confinement. We explain the experimental trends using a nonlocal Drude dielectric response theory based on the Keldysh-Rytova (KR) potential that predicts the thickness-dependent optical properties caused by electron confinement in plasmonic TDMs. Our experimental findings are consistent with the KR model and demonstrate quantum-confinement-induced optical properties in plasmonic transdimensional TiN.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04692DOI Listing

Publication Analysis

Top Keywords

optical properties
12
drude plasma
8
plasma frequency
8
plasmonic transdimensional
8
plasmonic
5
thickness-dependent drude
4
frequency transdimensional
4
transdimensional plasmonic
4
plasmonic tin
4
tin plasmonic
4

Similar Publications

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Au nanoclusters often demonstrate useful optical properties such as visible/near-infrared photoluminescence in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8e- superatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide- and triphenylphosphine-ligated Au11 nanocluster, obtaining a cluster with a proposed molecular formula PtAu10(PPh3)7Br3.

View Article and Find Full Text PDF

Royal jelly (RJ) is recognized due to its high nutritional value and potential health benefits. Previous research showed that RJ supplementation decreased fat accumulation, resulting in weight loss and improvements in hyperglycemia and insulin resistance in high-fat diet (HFD)-induced obese mice. To expand the weight-reducing properties of RJ, this study aimed to investigate the effects of RJ supplementation on HFD-induced obese mice with impaired sleep stabilization.

View Article and Find Full Text PDF

Radiopaque hydrogel-in-liposomes towards theranostic applications for malignant tumors.

Biomed Pharmacother

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

A radiopaque hydrogel-in-liposome (RHL) system was developed for micro-computed tomography (μCT) imaging of tumor tissue and simultaneous delivery of a cytotoxic agent. Iopamidol (IPD) and doxorubicin (DOX) were incorporated as the CT contrast and anti-cancer agents, respectively. The presence of a polyethylene glycol hydrogel core in the liposomes was confirmed via attenuated total reflectance Fourier transform infrared, proton nuclear magnetic resonance, and selective solvent extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!