Background: West Nile virus (WNV) is a vector-borne pathogen of global relevance and is currently the most widely distributed flavivirus causing encephalitis worldwide. Climate conditions have direct and indirect impacts on vector abundance and virus dynamics within the mosquito. The significance of environmental variables as drivers in WNV epidemiology is increasing under the current climate change scenario. In this study we used a machine learning algorithm to model WNV distributions in South America.
Methods: Our model evaluated eight environmental variables for their contribution to the occurrence of WNV since its introduction in South America in 2004.
Results: Our results showed that environmental variables can directly alter the occurrence of WNV, with lower precipitation and higher temperatures associated with increased virus incidence. High-risk areas may be modified in the coming years, becoming more evident with high greenhouse gas emission levels. Countries such as Bolivia, Paraguay and several Brazilian areas, mainly in the northeast and midwest regions and the Pantanal biome, will be greatly affected, drastically changing the current WNV distribution.
Conclusions: Understanding the linkages between climatological and ecological change as determinants of disease emergence and redistribution will help optimize preventive strategies. Increased virus surveillance, integrated modelling and the use of geographically based data systems will provide more anticipatory measures by the scientific community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/trstmh/trac044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!