Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an -phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH through site-specific dibenzylation with the two cysteine residues and further coupling with β-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified β-galactosidase readily, which could be internalized selectively into αβ integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the β-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated using nude mice bearing an αβ integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native β-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c04017DOI Listing

Publication Analysis

Top Keywords

extrinsic enzyme
12
specific activation
8
precisive photodynamic
8
photodynamic therapy
8
cancer cells
8
activation photosensitizer
4
extrinsic
4
photosensitizer extrinsic
4
enzyme
4
enzyme precisive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!