Non-native species can become deleterious or potentially beneficial as components of novel ecosystems. The non-native red macroalga Gracilaria vermiculophylla may provide nursery habitat where eelgrass Zostera marina has been extirpated in Chesapeake Bay. A mensurative experiment was conducted monthly May-October 2013 and 2014 in the York River, Chesapeake Bay, to evaluate hypotheses that Gracilaria (1) can compensate for the loss of seagrass nurseries by colonizing habitats where seagrass has been eliminated by environmental stress, and (2) is utilized by juvenile blue crabs (Callinectes sapidus) as nursery habitat. We quantified Gracilaria presence, percent cover, and biomass as a function of region (upriver, midriver, and downriver) and seagrass presence or absence using stratified random sampling, 20-m transects, and 0.0625-m2 quadrats. Gracilaria volume was measured and converted to dry weight. Effects of the factors and covariates temperature, salinity, dissolved oxygen, month, and year were analyzed using generalized linear models. Juvenile blue crab density was quantified in summer 2013 using suction sampling in Gracilaria and seagrass. A model with the collective effect of region and seagrass presence or absence (downriver seagrass, downriver unvegetated bottom, midriver unvegetated bottom) best predicted Gracilaria abundance. Gracilaria presence, percent cover, and biomass were highest in downriver seagrass, followed by downriver unvegetated bottom, and then midriver unvegetated bottom, where seagrass has been extirpated, supporting hypothesis (1). Gracilaria did not occur upriver, likely due to a lack of recruitment. Seagrass and Gracilaria housed similar densities of juvenile blue crabs, supporting hypothesis (2). We estimated that a single 40-ha cove system with Gracilaria could house 200,000 juvenile crabs as would a single 2.4-ha seagrass bed. Consequently, the numerous midriver and downriver cove systems in the York River could support millions of young juvenile blue crabs and thereby compensate for the loss of seagrass in the river and in other areas of Chesapeake Bay. At present, Gracilaria has no widespread negative impacts on seagrass in the York River or most regions of Chesapeake Bay, likely because percent cover and biomass are not excessively high at present. We posit that Gracilaria has become an important alternative nursery habitat for the blue crab in Chesapeake Bay and can potentially mitigate impacts of climate change on seagrass nursery habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154113PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267880PLOS

Publication Analysis

Top Keywords

chesapeake bay
24
nursery habitat
16
juvenile blue
16
unvegetated bottom
16
seagrass
14
gracilaria
13
blue crab
12
york river
12
blue crabs
12
percent cover
12

Similar Publications

Data on dissolved phase water concentrations of polychlorinated biphenyls (PCBs) from 32 locations across the U.S. were compiled from reports, Web sites, and peer-reviewed papers, spanning 1979-2020, resulting in 5132 individual samples.

View Article and Find Full Text PDF

The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.

View Article and Find Full Text PDF

Genome-resolved adaptation strategies of to changing conditions in the Chesapeake and Delaware Bays.

Appl Environ Microbiol

January 2025

Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA.

Unlabelled: The abundant and metabolically versatile aquatic bacterial order, , influences marine biogeochemical cycles. We assessed metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Many agricultural watersheds depend on voluntary management practices (MPs) to improve water quality by reducing nutrient and sediment runoff, but the effectiveness of these practices is unclear.
  • Analysis of water-quality data from three prioritized Chesapeake Bay watersheds (Smith Creek, Upper Chester River, and Conewago Creek) from 1985 to 2020 reveals inconsistent outcomes, with some areas seeing no decrease in nutrient or sediment loads despite an increase in MPs.
  • The study suggests that while MPs may have prevented further water-quality decline, real improvements will likely require lowering manure and fertilizer applications, underscoring the need for long-term monitoring to evaluate MP effectiveness.
View Article and Find Full Text PDF

Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!