Heterogeneous Diamond-cBN Composites with Superb Toughness and Hardness.

Nano Lett

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China.

Published: June 2022

The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c01716DOI Listing

Publication Analysis

Top Keywords

superhard materials
12
heterogeneous diamond-cbn
8
diamond-cbn composites
8
microstructure engineering
8
mechanical properties
8
composites superb
4
superb toughness
4
toughness hardness
4
hardness traditional
4
traditional hardness-toughness
4

Similar Publications

Microwave Surface and Lamb Waves in a Thin Diamond Plate: Experimental and Theoretical Investigation.

Ultrasonics

January 2025

Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.

Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.

View Article and Find Full Text PDF

In the present study, a novel normally-off vertical GaN MOSFET with an enhanced AlGaN/GaN channel on the sidewall has been proposed using the technology computer-aided design (TCAD) simulation. By using the selective area growth process, the trench structure and the enhanced sidewall channel are formed simultaneously, which is beneficial to enhance the conduction capability compared with the conventional trenched MOSFET. It demonstrates that a proper hole concentration and thickness of the p-GaN layer are key parameters to balance the threshold voltage, on-state resistance, and off-state breakdown voltage, resulting in the highest Baliga's figure of merit value.

View Article and Find Full Text PDF

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

Superconductivity and high hardness in scandium-borides under pressure.

Phys Chem Chem Phys

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P. R. China.

Exploration of new superconducting or superhard transition-metal borides has attracted extensive interest in the past few decades. In this study, we conducted comprehensive theoretical investigations in the scandium-boron binary system by employing a structural search method based upon first-principles density functional theory. Among the six predicted superconducting scandium-borides, ScB (3̄) has the highest superconducting transition temperature = 12.

View Article and Find Full Text PDF

Design of High-Temperature Superconducting Ternary Hydride NaY3H20 at Moderate Pressure via Introducing Hydrogen Vacancies.

Inorg Chem

January 2025

State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.

Superconducting hydrides exhibiting a high critical temperature () under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high- superconducting hydrides that can be stabilized at lower or even ambient pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!