Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Constraining the climate crisis requires urgent action to reduce anthropogenic emissions while simultaneously removing carbon dioxide from the atmosphere. Improved information about the maximum magnitude and spatial distribution of opportunities for additional land-based removals of CO2 is needed to guide on-the-ground decision-making about where to implement climate change mitigation strategies. Here, we present a globally consistent spatial dataset (approximately 500-m resolution) of current, potential, and unrealized potential carbon storage in woody plant biomass and soil organic matter. We also provide a framework for prioritizing actions related to the restoration, management, and maintenance of woody carbon stocks and associated soils. By comparing current to potential carbon storage, while excluding areas critical to food production and human habitation, we find 287 petagrams (PgC) of unrealized potential storage opportunity, of which 78% (224 PgC) is in biomass and 22% (63 PgC) is in soil. Improved management of existing forests may offer nearly three-fourths (206 PgC) of the total unrealized potential, with the majority (71%) concentrated in tropical ecosystems. However, climate change is a source of considerable uncertainty. While additional research is needed to understand the impact of natural disturbances and biophysical feedbacks, we project that the potential for additional carbon storage in woody biomass will increase (+17%) by 2050 despite projected decreases (−12%) in the tropics. Our results establish an absolute reference point and conceptual framework for national and jurisdictional prioritization of locations and actions to increase land-based carbon storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191349 | PMC |
http://dx.doi.org/10.1073/pnas.2111312119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!