Background: Machine learning (ML) methodology development for the classification of immune states in adaptive immune receptor repertoires (AIRRs) has seen a recent surge of interest. However, so far, there does not exist a systematic evaluation of scenarios where classical ML methods (such as penalized logistic regression) already perform adequately for AIRR classification. This hinders investigative reorientation to those scenarios where method development of more sophisticated ML approaches may be required.
Results: To identify those scenarios where a baseline ML method is able to perform well for AIRR classification, we generated a collection of synthetic AIRR benchmark data sets encompassing a wide range of data set architecture-associated and immune state-associated sequence patterns (signal) complexity. We trained ≈1,700 ML models with varying assumptions regarding immune signal on ≈1,000 data sets with a total of ≈250,000 AIRRs containing ≈46 billion TCRβ CDR3 amino acid sequences, thereby surpassing the sample sizes of current state-of-the-art AIRR-ML setups by two orders of magnitude. We found that L1-penalized logistic regression achieved high prediction accuracy even when the immune signal occurs only in 1 out of 50,000 AIR sequences.
Conclusions: We provide a reference benchmark to guide new AIRR-ML classification methodology by (i) identifying those scenarios characterized by immune signal and data set complexity, where baseline methods already achieve high prediction accuracy, and (ii) facilitating realistic expectations of the performance of AIRR-ML models given training data set properties and assumptions. Our study serves as a template for defining specialized AIRR benchmark data sets for comprehensive benchmarking of AIRR-ML methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9154052 | PMC |
http://dx.doi.org/10.1093/gigascience/giac046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!